Skip to main content
Log in

Physical simulation of oscillation and falling effects of objects in indoor earthquake scenarios

  • Original article
  • Published:
The Visual Computer Aims and scope Submit manuscript

Abstract

When an earthquake occurs, indoor objects oscillate and fall, creating a hazardous evacuation environment. However, physical effects of oscillating and falling indoor objects during earthquakes are often ignored in the existing crowd emergency evacuation simulation studies. As a result, existing models will produce predictions that differ from the outcomes of real events. Here we propose a physics-based simulation model for an indoor seismic event scenario, focusing on movable and flexible components. We predict the motion of movable components during earthquakes using simulations based on seismic data and physical laws. In doing this, we also simulate oscillations of flexible components using a driven harmonic oscillator model. The results showed that the simulated scenario had a high degee of physical realism and rationality.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Klepeis, N.E., Nelson, W.C., Ott, W.R., Robinson, J.P., Tsang, A.M., Switzer, P., Behar, J.V., Hern, S.C., Engelmann, W.H.: The National Human Activity Pattern Survey (NHAPS): a resource for assessing exposure to environmental pollutants. J. Expos. Sci. Environ. Epidemiol. 11(3), 231–252 (2001). https://doi.org/10.1038/sj.jea.7500165

    Article  Google Scholar 

  2. Xu, Z., Zhang, Z., Lu, X., Zeng, X., Guan, H.: Post-earthquake fire simulation considering overall seismic damage of sprinkler systems based on BIM and FEMA P-58. Autom. Constr. 90, 9–22 (2018). https://doi.org/10.1016/j.autcon.2018.02.015

    Article  Google Scholar 

  3. Wang, K., Cai, W., Zhang, Y., Hao, H., Wang, Z.: Numerical simulation of fire smoke control methods in subway stations and collaborative control system for emergency rescue. Process Saf. Environ. Prot. 147, 146–161 (2021). https://doi.org/10.1016/j.psep.2020.09.033

    Article  Google Scholar 

  4. Liu, Q.: A social force model for the crowd evacuation in a terrorist attack. Phys. A Stat. Mech. Appl. 502, 315–330 (2018). https://doi.org/10.1016/j.physa.2018.02.136

    Article  Google Scholar 

  5. Miranda, E., Mosqueda, G., Retamales, R., Pekcan, G.: Performance of nonstructural components during the 27 February 2010 Chile Earthquake. Earthq. Spectra 28(1_suppl1), 453–471 (2012). 10.1193/1.4000032

  6. Tang, B., Chen, Q., Chen, X., Glik, D., Liu, X., Liu, Y., Zhang, L.: Earthquake-related injuries among survivors: a systematic review and quantitative synthesis of the literature. Int. J. Disaster Risk Reduct. 21, 159–167 (2017). https://doi.org/10.1016/j.ijdrr.2016.12.003

    Article  Google Scholar 

  7. Ramirez, M., Kubicek, K., Peek-Asa, C., Wong, M.: Accountability and assessment of emergency drill performance at schools. Fam. Community Health 32(2), 105–114 (2009). https://doi.org/10.1097/FCH.0b013e3181994662

    Article  Google Scholar 

  8. Feng, Z., González, V.A., Amor, R., Spearpoint, M., Thomas, J., Sacks, R., Lovreglio, R., Cabrera-Guerrero, G.: An immersive virtual reality serious game to enhance earthquake behavioral responses and post-earthquake evacuation preparedness in buildings. Adv. Eng. Inform. 45, 101118 (2020). https://doi.org/10.1016/j.aei.2020.101118

    Article  Google Scholar 

  9. Feng, Z., González, V.A., Mutch, C., Amor, R., Rahouti, A., Baghouz, A., Li, N., Cabrera-Guerrero, G.: Towards a customizable immersive virtual reality serious game for earthquake emergency training. Adv. Eng. Inform. 46, 101134 (2020). https://doi.org/10.1016/j.aei.2020.101134

    Article  Google Scholar 

  10. Ronchi, E., Corbetta, A., Galea, E.R., Kinateder, M., Kuligowski, E., McGrath, D., Pel, A., Shiban, Y., Thompson, P., Toschi, F.: New approaches to evacuation modelling for fire safety engineering applications. Fire Saf. J. 106, 197–209 (2019). https://doi.org/10.1016/j.firesaf.2019.05.002

    Article  Google Scholar 

  11. Dong, B., Yan, D., Li, Z., Jin, Y., Feng, X., Fontenot, H.: Modeling occupancy and behavior for better building design and operation—a critical review. Build. Simul. 11(5), 899–921 (2018). https://doi.org/10.1007/s12273-018-0452-x

    Article  Google Scholar 

  12. Chen, J., Shi, T., Li, N.: Pedestrian evacuation simulation in indoor emergency situations: approaches, models and tools. Saf. Sci. 142, 105378 (2021). https://doi.org/10.1016/j.ssci.2021.105378

    Article  Google Scholar 

  13. Zhou, J., Li, S., Nie, G., Fan, X., Tan, J., Li, H., Pang, X.: Developing a database for pedestrians’ earthquake emergency evacuation in indoor scenarios. PLoS ONE 13(6), e0197964 (2018). https://doi.org/10.1371/journal.pone.0197964

  14. Lu, X., Yang, Z., Cimellaro, G.P., Xu, Z.: Pedestrian evacuation simulation under the scenario with earthquake-induced falling debris. Saf. Sci. 114, 61–71 (2019). https://doi.org/10.1016/j.ssci.2018.12.028

    Article  Google Scholar 

  15. He, J.: Earthquake evacuation simulation of multi-story buildings during earthquakes. Earthq. Spectra (2020). https://doi.org/10.1177/8755293020957353

    Article  Google Scholar 

  16. Lovreglio, R., Gonzalez, V., Feng, Z., Amor, R., Spearpoint, M., Thomas, J., Trotter, M., Sacks, R.: Prototyping virtual reality serious games for building earthquake preparedness: the Auckland City Hospital case study. Adv. Eng. Inform. 38, 670–682 (2018). https://doi.org/10.1016/j.aei.2018.08.018

    Article  Google Scholar 

  17. Tian, Z., Zhang, G., Hu, C., Lu, D., Liu, H.: Knowledge and emotion dual-driven method for crowd evacuation. Knowl. Based Syst. 208, 106451 (2020). https://doi.org/10.1016/j.knosys.2020.106451

    Article  Google Scholar 

  18. Sticco, I., Frank, G., Dorso, C.: Social force model parameter testing and optimization using a high stress real-life situation. Phys. A Stat. Mech. Appl. 561, 125299 (2021). https://doi.org/10.1016/j.physa.2020.125299

    Article  Google Scholar 

  19. Zang, Y., Mei, Q., Liu, S.: Evacuation simulation of a high-rise teaching building considering the influence of obstacles. Simul. Model. Pract. Theory 112, 102–354 (2021). https://doi.org/10.1016/j.simpat.2021.102354

    Article  Google Scholar 

  20. Liu, Q., Lu, L., Zhang, Y., Hu, M.: Modeling the dynamics of pedestrian evacuation in a complex environment. Phys. A Stat. Mech. Appl. (2021). https://doi.org/10.1016/j.physa.2021.126426

    Article  Google Scholar 

  21. Tian, X., Li, K., Kang, Z., Peng, Y., Cui, H.: Simulating the dynamical features of evacuation governed by periodic vibrations. Chaos Solitons Fract. 139, 110099 (2020). https://doi.org/10.1016/j.chaos.2020.110099

    Article  MathSciNet  MATH  Google Scholar 

  22. Li, C., Liang, W., Quigley, C., Zhao, Y., Yu, L.F.: Earthquake safety training through virtual drills. IEEE Trans. Vis. Comput. Graph. 23(4), 1275–1284 (2017). https://doi.org/10.1109/TVCG.2017.2656958

    Article  Google Scholar 

  23. Liu, T., Liu, Z., Ma, M., Chen, T., Liu, C., Chai, Y.: 3D visual simulation of individual and crowd behavior in earthquake evacuation. Simulation 95(1), 65–81 (2019). https://doi.org/10.1177/0037549717753294

    Article  Google Scholar 

  24. Zhang, F., Xu, Z., Yang, Y., Qi, M., Zhang, H.: Virtual reality-based evaluation of indoor earthquake safety actions for occupants. Adv. Eng. Inform. 49, 101351 (2021). https://doi.org/10.1016/j.aei.2021.101351

    Article  Google Scholar 

  25. Sun, Q., Turkan, Y.: A BIM-based simulation framework for fire safety management and investigation of the critical factors affecting human evacuation performance. Adv. Eng. Inform. 44, 101093 (2020). https://doi.org/10.1016/j.aei.2020.101093

    Article  Google Scholar 

  26. Li, Z., Huang, H., Li, N., Chu, M.L., Law, K.: An agent-based simulator for indoor crowd evacuation considering fire impacts. Autom. Constr. 120, 103395 (2020). https://doi.org/10.1016/j.autcon.2020.103395

    Article  Google Scholar 

  27. Lu, X., Yang, Z., Xu, Z., Xiong, C.: Scenario simulation of indoor post-earthquake fire rescue based on building information model and virtual reality. Adv. Eng. Softw. 143, 102792 (2020). https://doi.org/10.1016/j.advengsoft.2020.102792

    Article  Google Scholar 

  28. Pan, Z., Manocha, D.: Active animations of reduced deformable models with environment interactions. ACM Trans. Graph. 37(3), 1–17 (2018). https://doi.org/10.1145/3197565

    Article  Google Scholar 

  29. Choi, M.J., Cho, S.: Isogeometric configuration design sensitivity analysis of geometrically exact shear-deformable beam structures. Comput. Methods Appl. Mech. Eng. 351, 153–183 (2019). https://doi.org/10.1016/j.cma.2019.03.032

    Article  MathSciNet  MATH  Google Scholar 

  30. Macklin, M., Erleben, K., Müller, M., Chentanez, N., Jeschke, S., Makoviychuk, V.: Non-smooth Newton methods for deformable multi-body dynamics. ACM Trans. Graph. 38(5), 1–20 (2019). https://doi.org/10.1145/3338695

    Article  Google Scholar 

  31. Ancheta, T.D., Darragh, R.B., Stewart, J.P., Seyhan, E., Silva, W.J., Chiou, B.S.J., Wooddell, K.E., Graves, R.W., Kottke, A.R., Boore, D.M., Kishida, T., Donahue, J.L.: NGA-West2 database. Earthq. Spectra 30(3), 989–1005 (2014). https://doi.org/10.1193/070913EQS197M

    Article  Google Scholar 

  32. Xu, Z., Zhang, H., Wei, W., Yang, Z.: Virtual scene construction for seismic damage of building ceilings and furniture. Appl. Sci. 9(17), 3465 (2019). https://doi.org/10.3390/app9173465

    Article  Google Scholar 

  33. Walker, J., Halliday, D.: Fundamentals of Physics, 9th ed., extended edn. Wiley, Hoboken (2011)

  34. Wang, J., Leng, X., Liu, X.: The determination of the activation energy for a vibro-impact system under multiple excitations. Nonlinear Dyn. (2021). https://doi.org/10.1007/s11071-021-06702-x

    Article  Google Scholar 

  35. Chakraverty, S., Tapaswini, S., Behera, D.: Fuzzy Differential Equations and Applications for Engineers and Scientists. CRC Press (2016). https://doi.org/10.1201/9781315372853

  36. Xu, Z., Wu, Y., Lu, X., Jin, X.: Photo-realistic visualization of seismic dynamic responses of urban building clusters based on oblique aerial photography. Adv. Eng. Inform. 43, 101025 (2020). https://doi.org/10.1016/j.aei.2019.101025

    Article  Google Scholar 

  37. Bauchau, O.A., Craig, J.I.: Euler–Bernoulli beam theory. In: Structural Analysis, vol. 163, pp. 173–221. Springer, Dordrecht (2009). https://doi.org/10.1007/978-90-481-2516-6_5

  38. Ministry of Housing and Urban-Rural Development: Code for Seismic Design of Buildings (GB 50011-2010). China Architecture Industry Press, Beijing(2016)

  39. State Administration of Market Regulation: The Chinese Seismic Intensity Scale (GB17742-2020). China Standards and Quality Inspection Press, Beijing (2020)

  40. Zeng, X., Lu, X., Yang, T.Y., Xu, Z.: Application of the FEMA-P58 methodology for regional earthquake loss prediction. Nat Hazards 83(1), 177–192 (2016). https://doi.org/10.1007/s11069-016-2307-z

    Article  Google Scholar 

Download references

Funding

This work was supported by the Ministry of Science and Higher Education of the Russian Federation (state assignment Project No. 0723-2020-0036) and Ningbo Science Technology Plan projects (Grants 2021S091).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhen Liu.

Ethics declarations

Conflicts of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chu, Y., Liu, Z., Liu, T. et al. Physical simulation of oscillation and falling effects of objects in indoor earthquake scenarios. Vis Comput 38, 3513–3523 (2022). https://doi.org/10.1007/s00371-022-02558-3

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00371-022-02558-3

Keywords

Navigation