Skip to main content
Log in

Adaptive arc area inpainting and image enhancement method based on AI-DLC model

  • Original article
  • Published:
The Visual Computer Aims and scope Submit manuscript

Abstract

Complex industrial scenarios are accompanied by many disturbances, especially when arcs are used as a industrial technique method in the process flow. Arc interference can cause disturbances such as contrast reduction, color deviation, instantaneous overexposure, low illumination, and loss of detail to the captured images, as hinders the development of industry toward the intelligent direction industrial intelligence. Due to the particularity of arc interference, none of the existing studies can be applied to the inpainting of such images. In this study, we constructed the Arc Interference—Distance, Light intensity, and Color (AI-DLC) model by analyzing the characteristics of arc light and its mechanism of interference to the image, which was used to measure the local interference of arc light. Based on this model, we propose the adaptive arc area inpainting and image enhancement method. This method, firstly, splits the original image into several equal-sized patches. Secondly, it classifies them according to the model values. Finally, the patches are processed by each adaptive module. Through experiments in real industrial scenes, compared with commonly used image restoration methods, this method can effectively repair the arc area, enhance image information, and improve image quality.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Kim, T.K., Paik, J.K., Kang, B.S.: Contrast enhancement system using spatially adaptive histogram equalization with temporal filtering. IEEE Trans. Consum. Electron. 44(1), 82–87 (1998)

    Article  Google Scholar 

  2. Stark, J.A.: Adaptive image contrast enhancement using generalizations of histogram equalization. IEEE Trans. Image Process. 9(5), 889–896 (2000)

    Article  Google Scholar 

  3. Galdran, A., Vazquez-Corral, J., Pardo, D., Bertalmio, M.: Enhanced variational image dehazing. SIAM J. Imag. Sci. 8(3), 1519–1546 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  4. Wang, Y., Wang, H., Yin, C., Dai, M.: Biologically inspired image enhancement based on Retinex. Neurocomputing 177, 373–384 (2016)

    Article  Google Scholar 

  5. Galdran, A., Alvarez-Gila, A., Bria, A., Vazquez-Corral, J., Bertalmío, M.: In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 8212–8221 (2018)

  6. He, K., Sun, J., Tang, X.: Single image haze removal using dark channel prior. IEEE Trans. Pattern Anal. Mach. Intell. 33(12), 2341–2353 (2010)

    Google Scholar 

  7. Shanmugavadivu, P., Balasubramanian, K., Muruganandam, A.: Particle swarm optimized bi-histogram equalization for contrast enhancement and brightness preservation of images. Vis. Comput. 30(4), 387–399 (2014)

    Article  Google Scholar 

  8. Bulut, F.: Low dynamic range histogram equalization (LDR-HE) via quantized Haar wavelet transform. Vis. Comput. 38(6), 2239–2255 (2022)

    Article  Google Scholar 

  9. Nishino, K., Kratz, L., Lombardi, S.: Bayesian defogging. Int. J. Comput. Vis. 98(3), 263–278 (2012)

    Article  MathSciNet  Google Scholar 

  10. Gibson, K.B., Nguyen, T.Q.: An analysis of single image defogging methods using a color ellipsoid framework. EURASIP J. Image Video Process. 2013(1), 1–14 (2013)

    Article  Google Scholar 

  11. Zhu, Q., Mai, J., Shao, L.: A fast single image haze removal algorithm using color attenuation prior. IEEE Trans. Image Process. 24(11), 3522–3533 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  12. Li, Z., Zheng, J.: Edge-preserving decomposition-based single image haze removal. IEEE Trans. Image Process. 24(12), 5432–5441 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  13. Ning, Z., Shanjun, M., Mei, L.: Visibility restoration algorithm of dust-degraded images. J. Image Graph. 21(6), 1585–1592 (2016)

    Google Scholar 

  14. Yu, S., Zhu, H., Wang, J., Fu, Z., Xue, S., Shi, H.: Single sand-dust image restoration using information loss constraint. J. Mod. Opt. 63(21), 2121–2130 (2016)

    Article  Google Scholar 

  15. Yang, C., Feng, H., Xu, Z., Li, Q., Chen, Y.: Correction of overexposure utilizing haze removal model and image fusion technique. Vis. Comput. 35(5), 695–705 (2019)

    Article  Google Scholar 

  16. Fan, X., Tang, X., Hou, M., Luo, Z.: Fast example searching for input-adaptive data-driven dehazing with gaussian process regression. Vis. Comput. 35(4), 565–577 (2019)

    Article  Google Scholar 

  17. Yang, Y., Zhang, C., Liu, L., Chen, G., Yue, H.: Visibility restoration of single image captured in dust and haze weather conditions. Multidimension. Syst. Signal Process. 31(2), 619–633 (2020)

    Article  Google Scholar 

  18. Shao, W., Liu, L., Jiang, J., Yan, Y.: Low-light-level image enhancement based on fusion and Retinex. J. Mod. Opt. 67(13), 1190–1196 (2020)

    Article  Google Scholar 

  19. Cai, B., Xu, X., Jia, K., Qing, C., Tao, D.: Dehazenet: an end-to-end system for single image haze removal. IEEE Trans. Image Process. 25(11), 5187–5198 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  20. Li, B., Peng, X., Wang, Z., Xu, J., Feng, D.: In: Proceedings of the IEEE international conference on computer vision, pp. 4770–4778 (2017)

  21. Hodges, C., Bennamoun, M., Rahmani, H.: Single image dehazing using deep neural networks. Pattern Recognit. Lett. 128, 70–77 (2019)

    Article  Google Scholar 

  22. Wang, A., Wang, W., Liu, J., Gu, N.: Aipnet: image-to-image single image dehazing with atmospheric illumination prior. IEEE Trans. Image Process. 28(1), 381–393 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  23. Chen, Z., Hu, Z., Sheng, B., Li, P., Kim, J., Wu, E.: Simplified non-locally dense network for single-image dehazing. Vis. Comput. 36(10), 2189–2200 (2020)

    Article  Google Scholar 

  24. Zhang, S., He, F.: DRCDN: learning deep residual convolutional dehazing networks. Vis. Comput. 36(9), 1797–1808 (2020)

    Article  Google Scholar 

  25. Li, M., Zhao, L., Zhou, D., Nie, R., Liu, Y., Wei, Y.: AEMS: an attention enhancement network of modules stacking for lowlight image enhancement. Vis. Comput. (2021). https://doi.org/10.1007/s00371-021-02289-x

    Article  Google Scholar 

  26. Yu, N., Li, J., Hua, Z.: Fla-net: multi-stage modular network for low-light image enhancement. Vis. Comput. (2022). https://doi.org/10.1007/s00371-022-02402-8

    Article  Google Scholar 

  27. Wang, X., Xie, L., Dong, C., Shan, Y.: In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 1905–1914 (2021)

  28. Cai, J., Zeng, H., Yong, H., Cao, Z., Zhang, L.: In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 3086–3095 (2019)

  29. Yang, X., Wang, X., Wang, N., Gao, X.: SRDN: a unified super-resolution and motion deblurring network for space image restoration. IEEE Trans. Geosci. Remote Sens. 60, 1–11 (2021)

    Google Scholar 

  30. Wang, L., Wang, Y., Dong, X., Xu, Q., Yang, J., An, W., Guo, Y.: In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 10,581–10,590 (2021)

  31. Lee, S., Kwon, H., Han, H., Lee, G., Kang, B.: A space-variant luminance map based color image enhancement. IEEE Trans. Consum. Electron. 56(4), 2636–2643 (2010)

    Article  Google Scholar 

  32. Narendra, P.M., Fitch, R.C.: Real-time adaptive contrast enhancement. IEEE Trans. Pattern Anal. Mach. Intell. 6, 655–661 (1981)

    Article  Google Scholar 

  33. Celik, T.: Two-dimensional histogram equalization and contrast enhancement. Pattern Recogn. 45(10), 3810–3824 (2012)

    Article  Google Scholar 

  34. Manju, R., Koshy, G., Simon, P.: Improved method for enhancing dark images based on CLAHE and morphological reconstruction. Procedia Comput. Sci. 165, 391–398 (2019)

    Article  Google Scholar 

  35. Thai, B., Deng, G., Ross, R.: A fast white balance algorithm based on pixel greyness. Signal Image Video Process. 11(3), 525–532 (2017)

    Article  Google Scholar 

  36. Bilcu, R.C.: Multiframe auto white balance. IEEE Signal Process. Lett. 18(3), 165–168 (2011)

    Article  Google Scholar 

  37. Hussin, W.M.S.B.W., Noordin, M.N.M.J., Isa, N.A.M.: Nonlinear local-pixel-shifting color constancy algorithm. Multimed. Tools. Appl. 78(8), 10,401-10,448 (2019)

  38. Jang, C.Y., Lim, J.H., Kim, Y.H.: In: 2012 International SoC Design Conference (ISOCC), IEEE, pp. 37–40 (2012)

  39. Zotin, A.: Fast algorithm of image enhancement based on multi-scale Retinex. Procedia Comput. Sci. 131, 6–14 (2018)

    Article  Google Scholar 

  40. Wang, J., Lu, K., Xue, J., He, N., Shao, L.: Single image dehazing based on the physical model and MSRCR algorithm. IEEE Trans. Circuits Syst. Video Technol. 28(9), 2190–2199 (2017)

    Article  Google Scholar 

Download references

Acknowledgements

We would like to thank the reviewers for their help in improving the paper. This work was supported by the Baosteel Technology Research and Development Fund (Grant No. 2021310014000358). This work was supported by Shanghai Collaborative Innovation Technology Fund (Grant No. XTCX2022-29).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaobin Li.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mou, T., Li, X. Adaptive arc area inpainting and image enhancement method based on AI-DLC model. Vis Comput 39, 6151–6165 (2023). https://doi.org/10.1007/s00371-022-02718-5

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00371-022-02718-5

Keywords

Navigation