Skip to main content
Log in

Multi-stage unsupervised fabric defect detection based on DCGAN

  • Original article
  • Published:
The Visual Computer Aims and scope Submit manuscript

Abstract

The diversity of fabric defects and the lack of defect samples make detecting fabric defects an important and challenging problem. Currently, unsupervised algorithms are widely used for surface defect detection as they do not require annotated data and therefore reduce the cost of data acquisition. This paper presents a multi-stage unsupervised fabric defect detection method based on DCGAN. The method consists of three stages: the GAN training, the encoder training, and the classifier training. The first two stages allow our model to reconstruct the test images. In the image reconstruction process, we use a linear weighted fusion method to reduce the interference of defects. When the reconstructed image is subtracted from the original, we get a residual map that highlights the defects. This pixel-level detection makes it easier to detect different types of defects. In addition, we introduce a classifier training phase to generate a likelihood map for the test images. Each pixel value in the likelihood map represents the probability of the original map having a defect in that location region. Finally, we fuse the residual map with the likelihood map and further perform threshold segmentation on the fused residual map. Our method uses a separate training strategy at each stage and learns from a set of image patches cropped out online. The experimental results are compared with other methods in recent years and validate the method’s superiority in terms of f-score metrics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

Data availability

The fabric data that support the findings of this study are available from Industrial Automation Research Laboratory from Department of Electrical and Electronic Engineering of Hong Kong University, https://ytngan.wordpress.com/codes/.

References

  1. Bao, X., Liang, J., Xia, Y., Hou, Z., Huan, Z.: Low-rank decomposition fabric defect detection based on prior and total variation regularization. Vis. Comput. 38(8), 2707–2721 (2022). https://doi.org/10.1007/s00371-021-02148-9

    Article  Google Scholar 

  2. Hanbay, K., Talu, M.F., Özgüven, Ö.F.: Fabric defect detection systems and methodsa systematic literature review. Optik 127(24), 11960–11973 (2016). https://doi.org/10.1016/j.ijleo.2016.09.110

    Article  Google Scholar 

  3. Ngan, H.Y., Pang, G.K., Yung, N.H.: Automated fabric defect detection-a review. Image Vis. Comput. 29(7), 442–458 (2011). https://doi.org/10.1016/j.imavis.2011.02.002

    Article  Google Scholar 

  4. Li, C., Li, J., Li, Y., He, L., Fu, X., Chen, J.: Fabric defect detection in textile manufacturing: a survey of the state of the art. Secur. Commun. Netw. (2021). https://doi.org/10.1155/2021/9948808

    Article  Google Scholar 

  5. Abouelela, A., Abbas, H.M., Eldeeb, H., Wahdan, A.A., Nassar, S.M.: Automated vision system for localizing structural defects in textile fabrics. Pattern Recogn. Lett. 26(10), 1435–1443 (2005). https://doi.org/10.1016/j.patrec.2004.11.016

    Article  Google Scholar 

  6. Deotale, N.T., Sarode, T.K.: Fabric defect detection adopting combined GLCM, Gabor wavelet features and random decision forest. 3D Res. 10(1), 1–13 (2019). https://doi.org/10.1007/s13319-019-0215-1

    Article  Google Scholar 

  7. Karlekar, V.V., Biradar, M., Bhangale, K.: Fabric defect detection using wavelet filter. In: 2015 International Conference on Computing Communication Control and Automation, pp. 712–715. IEEE (2015). https://doi.org/10.1109/ICCUBEA.2015.145

  8. Tsang, C.S., Ngan, H.Y., Pang, G.K.: Fabric inspection based on the Elo rating method. Pattern Recogn. 51, 378–394 (2016). https://doi.org/10.1016/j.patcog.2015.09.022

    Article  Google Scholar 

  9. Cao, J., Wang, N., Zhang, J., Wen, Z., Li, B., Liu, X.: Detection of varied defects in diverse fabric images via modified RPCA with noise term and defect prior. Int. J. Cloth. Sci. Technol. 28(4), 516–529 (2016). https://doi.org/10.1108/IJCST-10-2015-0117

    Article  Google Scholar 

  10. Li, C., Gao, G., Liu, Z., Huang, D., Xi, J.: Defect detection for patterned fabric images based on GHOG and low-rank decomposition. IEEE Access 7, 83962–83973 (2019). https://doi.org/10.1109/ACCESS.2019.2925196

    Article  Google Scholar 

  11. Shi, B., Liang, J., Di, L., Chen, C., Hou, Z.: Fabric defect detection via low-rank decomposition with gradient information. IEEE Access 7, 130423–130437 (2019). https://doi.org/10.1109/ACCESS.2019.2939843

    Article  Google Scholar 

  12. Ji, X., Liang, J., Di, L., Xia, Y., Hou, Z., Huan, Z., Huan, Y.: Fabric defect fetection via weighted low-rank decomposition and Laplacian regularization. J. Eng. Fibers Fabr. 15, 1558925020957654 (2020). https://doi.org/10.1177/1558925020957654

    Article  Google Scholar 

  13. Jing, J., Wang, Z., Rätsch, M., Zhang, H.: Mobile-Unet: an efficient convolutional neural network for fabric defect detection. Text. Res. J. 92(1–2), 30–42 (2022). https://doi.org/10.1177/0040517520928604

    Article  Google Scholar 

  14. Liu, J., Wang, C., Su, H., Du, B., Tao, D.: Multistage GAN for fabric defect detection. IEEE Trans. Image Process. 29, 3388–3400 (2019). https://doi.org/10.1109/TIP.2019.2959741

    Article  MATH  Google Scholar 

  15. Li, Y., Zhao, W., Pan, J.: Deformable patterned fabric defect detection with fisher criterion-based deep learning. IEEE Trans. Autom. Sci. Eng. 14(2), 1256–1264 (2016). https://doi.org/10.1109/TASE.2016.2520955

    Article  Google Scholar 

  16. Mei, S., Wang, Y., Wen, G.: Automatic fabric defect detection with a multi-scale convolutional denoising autoencoder network model. Sensors 18(4), 1064 (2018). https://doi.org/10.3390/s18041064

    Article  Google Scholar 

  17. Hu, G., Huang, J., Wang, Q., Li, J., Xu, Z., Huang, X.: Unsupervised fabric defect detection based on a deep convolutional generative adversarial network. Text. Res. J. 90(3–4), 247–270 (2020). https://doi.org/10.1177/0040517519862880

    Article  Google Scholar 

  18. Cheng, Z., Liang, J., Choi, H., Tao, G., Cao, Z., Liu, D., Zhang, X.: Physical attack on monocular depth estimation with optimal adversarial patches. In: European Conference on Computer Vision, pp. 514–532. Springer (2022). https://doi.org/10.1007/978-3-031-19839-7_30

  19. Yan, L., Ma, S., Wang, Q., Chen, Y., Zhang, X., Savakis, A., Liu, D.: Video captioning using global-local representation. IEEE Trans. Circuits Syst. Video Technol. (2022). https://doi.org/10.1109/TCSVT.2022.3177320

    Article  Google Scholar 

  20. Cui, Y., Cao, Z., Xie, Y., Jiang, X., Tao, F., Chen, Y.V., Li, L., Liu, D.: Dg-labeler and dgl-mots dataset: Boost the autonomous driving perception. In: Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision, pp. 58–67 (2022)

  21. Liu, D., Cui, Y., Yan, L., Mousas, C., Yang, B., Chen, Y.: Densernet: Weakly supervised visual localization using multi-scale feature aggregation. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 35, pp. 6101–6109 (2021). https://doi.org/10.1609/aaai.v35i7.16760

  22. Habib, M.T., Shuvo, S.B., Uddin, M.S., Ahmed, F.: Automated textile defect classification by bayesian classifier based on statistical features. In: 2016 International Workshop on Computational Intelligence (IWCI), pp. 101–105. IEEE (2016). https://doi.org/10.1109/IWCI.2016.7860347

  23. Raheja, J.L., Kumar, S., Chaudhary, A.: Fabric defect detection based on GLCM and Gabor filter: A comparison. Optik 124(23), 6469–6474 (2013). https://doi.org/10.1016/j.ijleo.2013.05.004

    Article  Google Scholar 

  24. Shumin, D., Zhoufeng, L., Chunlei, L.: Adaboost learning for fabric defect detection based on hog and svm. In: 2011 International conference on multimedia technology, pp. 2903–2906. IEEE (2011). https://doi.org/10.1109/ICMT.2011.6001937

  25. Zhu, D., Pan, R., Gao, W., Zhang, J.: Yarn-dyed fabric defect detection based on autocorrelation function and GLCM. Autex Res. J. 15(3), 226–232 (2015)

    Article  Google Scholar 

  26. Raheja, J.L., Ajay, B., Chaudhary, A.: Real time fabric defect detection system on an embedded DSP platform. Optik 124(21), 5280–5284 (2013). https://doi.org/10.1016/j.ijleo.2013.03.038

    Article  Google Scholar 

  27. Hou, X., Zhang, L.: Saliency detection: A spectral residual approach. In: 2007 IEEE Conference on computer vision and pattern recognition, pp. 1–8. IEEE (2007). https://doi.org/10.1109/CVPR.2007.383267

  28. Hu, G.H., Wang, Q.H.: Fabric defect detection via un-decimated wavelet decomposition and gumbel distribution model. J. Eng. Fibers Fabr. 13(1), 155892501801300100 (2018). https://doi.org/10.1177/155892501801300103

    Article  MathSciNet  Google Scholar 

  29. Kang, X., Zhang, E.: A universal and adaptive fabric defect detection algorithm based on sparse dictionary learning. IEEE Access 8, 221808–221830 (2020). https://doi.org/10.1109/ACCESS.2020.3041849

    Article  Google Scholar 

  30. Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S., Courville, A., Bengio, Y.: Generative adversarial networks. Commun. ACM 63(11), 139–144 (2020). https://doi.org/10.1177/155892501801300103

    Article  MathSciNet  Google Scholar 

  31. Wu, Q., Chen, Y., Meng, J.: Dcgan-based data augmentation for tomato leaf disease identification. IEEE Access 8, 98716–98728 (2020). https://doi.org/10.1109/ACCESS.2020.2997001

    Article  Google Scholar 

  32. Li, M., Tang, H., Chan, M.D., Zhou, X., Qian, X.: DC-AL GAN: pseudoprogression and true tumor progression of glioblastoma multiform image classification based on DCGAN and AlexNet. Med. Phys. 47(3), 1139–1150 (2020). https://doi.org/10.1002/mp.14003

    Article  Google Scholar 

  33. Schlegl, T., Seeböck, P., Waldstein, S.M., Langs, G., Schmidt-Erfurth, U.: f-AnoGAN: fast unsupervised anomaly detection with generative adversarial networks. Med. Image Anal. 54, 30–44 (2019). https://doi.org/10.1016/j.media.2019.01.010

    Article  Google Scholar 

  34. Schlegl, T., Seeböck, P., Waldstein, S.M., Schmidt-Erfurth, U., Langs, G.: Unsupervised anomaly detection with generative adversarial networks to guide marker discovery. In: International conference on information processing in medical imaging, pp. 146–157. Springer (2017). https://doi.org/10.1007/978-3-319-59050-9_12

  35. Xing, P., Sun, Y., Li, Z.: Self-supervised guided segmentation framework for unsupervised anomaly detection. arXiv preprint arXiv:2209.12440 (2022)

  36. Li, Z., Sun, Y., Zhang, L., Tang, J.: Ctnet: context-based tandem network for semantic segmentation. IEEE Trans. Pattern Anal. Mach. Intell. (2021). https://doi.org/10.1109/TPAMI.2021.3132068

    Article  Google Scholar 

  37. Xing, P., Li, Z.: Visual anomaly detection via partition memory bank module and error estimation. arXiv preprint arXiv:2209.12441 (2022). https://doi.org/10.48550/arXiv.2209.12441

  38. Radford, A., Metz, L., Chintala, S.: Unsupervised representation learning with deep convolutional generative adversarial networks. arXiv preprint arXiv:1511.06434 (2015). https://doi.org/10.48550/arXiv.1511.06434

  39. Shi, W., Wang, W., Zhu, L., Wu, K., Wu, J.: Clustering-based cycle Gan for fabric defect detection. Soc Sci Electron Publ. (2022). https://doi.org/10.2139/ssrn.4061500

  40. Cui, Y., Yan, L., Cao, Z., Liu, D.: Tf-blender: Temporal feature blender for video object detection. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 8138–8147 (2021)

  41. Liu, D., Cui, Y., Chen, Y., Zhang, J., Fan, B.: Video object detection for autonomous driving: motion-aid feature calibration. Neurocomputing 409, 1–11 (2020). https://doi.org/10.1016/j.neucom.2020.05.027

    Article  Google Scholar 

  42. Liu, D., Cui, Y., Tan, W., Chen, Y.: Sg-net: Spatial granularity network for one-stage video instance segmentation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 9816–9825 (2021)

Download references

Acknowledgements

This study was supported by Open Project of Key Laboratory of Ministry of Public Security for Road Traffic Safety (No. 2021ZDSYSKFKT04), Jiangsu Engineering Research Center of Digital Twinning Technology for Key Equipment in Petrochemical Process (No. DT2020720).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiuzhen Liang.

Ethics declarations

Conflict of interest

No potential conflict of interest was reported by the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wei, C., Liang, J., Liu, H. et al. Multi-stage unsupervised fabric defect detection based on DCGAN. Vis Comput 39, 6655–6671 (2023). https://doi.org/10.1007/s00371-022-02754-1

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00371-022-02754-1

Keywords