Skip to main content
Log in

An anchor-based convolutional network for the near-surface camouflaged personnel detection of UAVs

  • Original article
  • Published:
The Visual Computer Aims and scope Submit manuscript

Abstract

With the lightweight and dexterous design, unmanned aerial vehicles (UAVs) are widely used to perform near-surface target detection missions in various complex environments. The camouflaged personnel detection in the images captured by the UAVs plays an essential role in the information acquisition, which determines the success of detection missions. However, the camouflaged personnel are not easily discovered due to the high similarity between the camouflage style and the background. In addition, there is only available few labeled sample images. To address above-mentioned problems, a camouflaged personnel dataset is first established, and a novel anchor-based method is then proposed to detect the camouflaged personnel. In addition, the efficient channel attention and the improved receptive fields block are added in the anchor-based convolutional network to focus on more features about the camouflaged targets. Besides, the non-maximum suppression is applied to determine the optimal bounding box on the targets. The quantitative results and visualization effects demonstrate that the mean average precision of the proposed method can reach 85%, and the recall can reach 83% on the developed dataset.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data availability

The dataset generated during the current study are not publicly available but is available from the corresponding author on reasonable request.

References

  1. Liu, Y., Liao, L., Wu, H., Qin, J., He, L., Yang, G., Zhang, H., Zhang, J.: Trajectory and image-based detection and identification of UAV. Vis. Comput. 37, 1769–1780 (2021). https://doi.org/10.1007/s00371-020-01937-y

    Article  Google Scholar 

  2. Gong, K., Cao, Z., Xiao, Y., Fang, Z.: Abrupt-motion-aware lightweight visual tracking for unmanned aerial vehicles. Vis. Comput. 37, 371–383 (2021). https://doi.org/10.1007/s00371-020-01805-9

    Article  Google Scholar 

  3. Fan, J.R., Li, D.G., Li, R.P., Wang, Y.: Analysis on MAV/UAV cooperative combat based on complex network. Def. Technol. 16(1), 150–157 (2020). https://doi.org/10.1016/j.dt.2019.09.002

    Article  Google Scholar 

  4. Fan, J., Yang, X., Lu, R., Li, W., Huang, Y.: Long-term visual tracking algorithm for UAVs based on kernel correlation filtering and SURF features. Vis. Comput. (2022). https://doi.org/10.1007/s00371-021-02331-y

    Article  Google Scholar 

  5. Yang, X., Xu, W.D., Jia, Q., Liu, J.: MF-CFI: a fused evaluation index for camouflage patterns based on human visual perception. Def. Technol. (2021). https://doi.org/10.1016/j.dt.2020.08.007

    Article  Google Scholar 

  6. Zheng, Y., Zhang, X., Wang, F., Cao, T., Sun, M., Wang, X.: Detection of people with camouflage pattern via dense deconvolution network. IEEE Signal Process. Lett. 1, 29–33 (2019). https://doi.org/10.1109/LSP.2018.2825959

    Article  ADS  Google Scholar 

  7. Zhu, Q.: ACDNet with ASPP for camouflaged object detection. J. Phys. Conf. Ser. (2021). https://doi.org/10.1088/1742-6596/1982/1/012082

    Article  Google Scholar 

  8. Liu, Y., Yang, F., Ginhac, D.: ACDnet: An action detection network for real-time edge computing based on flow-guided feature approximation and memory aggregation. Pattern Recognit. Lett. 145, 18–126 (2021). https://doi.org/10.1016/j.patrec.2021.02.001

    Article  Google Scholar 

  9. Liu, Y., Wang, C.Q., Zhou, Y.J.: Camouflaged people detection based on a semi-supervised search identification network. Def. Technol. (2022). https://doi.org/10.1016/j.dt.2021.09.004

    Article  Google Scholar 

  10. Roy, K., Sahay, R.R.: A robust multi-scale deep learning approach for unconstrained hand detection aided by skin segmentation. Vis. Comput. (2021). https://doi.org/10.1007/s00371-021-02157-8

    Article  Google Scholar 

  11. Girshick, R., Donahue, J., Darrell, T., Malik, J.: Rich feature hierarchies for accurate object detection and semantic segmentation. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition 580–587(2014) https://doi.org/10.1109/CVPR.2014.81

  12. Yuan, W., Fu, C., Liu, R., et al.: SSoB: searching a scene-oriented architecture for underwater object detection. Vis. Comput. (2022). https://doi.org/10.1007/s00371-022-02654-4

    Article  Google Scholar 

  13. Junos, M.H., Mohd Khairuddin, A.S., Thannirmalai, S., Dahari, M.: Automatic detection of oil palm fruits from UAV images using an improved YOLO model. Vis. Comput. (2021). https://doi.org/10.1007/s00371-021-02116-3

    Article  Google Scholar 

  14. Chen, W., Huang, H., Peng, S., Zhou, C., Zhang, C.: YOLO-face: a real-time face detector. Vis. Comput. 37, 805–813 (2021). https://doi.org/10.1007/s00371-020-01831-7

    Article  Google Scholar 

  15. Zeng, L., Duan, X., Pan, Y., et al.: Research on the algorithm of helmet-wearing detection based on the optimized yolov4. Vis. Comput. (2022). https://doi.org/10.1007/s00371-022-02471-9

    Article  PubMed  PubMed Central  Google Scholar 

  16. Fan, D.P., Ji, G.P., Sun, G., Cheng, M.M., Shen, J., Shao, L.: Camouflaged object detection. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition (2020) https://doi.org/10.1109/CVPR42600.2020.00285

  17. Le, T.N., Nguyen, T.V., Nie, Z., Tran, M.T., Sugimoto, A.: Anabranch network for camouflaged object segmentation. Comput. Vis. Image Underst. (2019). https://doi.org/10.1016/j.cviu.2019.04.006

    Article  Google Scholar 

  18. Boult, T.E., Micheals, R.J., Gao, X., Eckmann, M.: Into the woods: Visual surveillance of noncooperative and camouflaged targets in complex outdoor settings. Proc. IEEE. 89(10), 1382–1402 (2001). https://doi.org/10.1109/5.959337

    Article  Google Scholar 

  19. Chen, J.Y.C.: UAV-guided navigation for ground robot tele-operation in a military reconnaissance environment. Ergonomics 8, 940–950 (2010). https://doi.org/10.1080/00140139.2010.500404

    Article  CAS  Google Scholar 

  20. Daoudi, S., Zouaoui, C.M.A., El-Mezouar, M.C., Taleb, N.: Parallelization of the K-Means++ clustering algorithm. Ing. Des Syst. Inf. 26(1), 59–66 (2021). https://doi.org/10.18280/isi.260106

    Article  Google Scholar 

  21. Liu, S., Huang, D., Wang, Y.: Receptive Field Block Net for Accurate and Fast Object Detection. In: Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) 404–419 (2018). https://doi.org/10.1007/978-3-030-01252-6_24

  22. Hu, J., Shen, L., Albanie, S., Sun, G., Wu, E.: Squeeze-and-excitation networks. IEEE Trans. Pattern Anal. Mach. Intell. 42(8), 2011–2023 (2020). https://doi.org/10.1109/TPAMI.2019.2913372

    Article  PubMed  Google Scholar 

  23. Wang, Q., Wu, B., Zhu, P., Li, P., Zuo, W., Hu, Q.: ECA-Net: Efficient channel attention for deep convolutional neural networks. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition (2020) https://doi.org/10.1109/CVPR42600.2020.01155

  24. Zheng, Z., Wang, P., Liu, W., Li, J., Ye, R., Ren, D.: Distance-IoU loss: faster and better learning for bounding box regression. In: AAAI 2020 - 34th AAAI Conference on Artificial Intelligence (2020) https://doi.org/10.1609/aaai.v34i07.6999

  25. Liu, W., Anguelov, D., Erhan, D., Szegedy, C., Reed, S., Fu, C.Y., Berg, A.C.: SSD: single shot multibox detector. In: Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) 21–37(2016). https://doi.org/10.1007/978-3-319-46448-0_2

  26. Lin, T.Y., Goyal, P., Girshick, R., He, K., Dollar, P.: Focal loss for dense object detection. In: Proceedings of the IEEE International Conference on Computer Vision 42(2), 318–327 (2017). https://doi.org/10.1109/ICCV.2017.324

  27. Zhou, X., Austin, U.T., Wang, D., Berkeley, U.C., Austin, U.T.: Object as point. Cvpr (2019). https://doi.org/10.48550/arXiv.1904.07850

    Article  Google Scholar 

  28. Wang, C.Y., Bochkovskiy, A., Liao, H.Y.M.: Scaled-yolov4: scaling cross stage partial network. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition (2021). https://doi.org/10.48550/arXiv.2011.08036

  29. Sun, P., Zhang, R., Jiang, Y., Kong, T., Xu, C., Zhan, W., Tomizuka, M., Li, L., Yuan, Z., Wang, C., Luo, P.: Sparse R-CNN: end-to-end object detection with learnable proposals. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition (2021) https://doi.org/10.48550/arXiv.2011.12450

  30. Zhang, H., Wang, Y., Dayoub, F., Sünderhauf, N.: VarifocalNet: an IoU-aware Dense Object Detector. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition (2021)

  31. Kong, T., Sun, F., Liu, H., Jiang, Y., Shi, J.: FoveaBox: beyond anchor-based object detector. Proc. IEEE Comput. Soc. Conf. Comput. Vis. Pattern Recognit (2019). https://doi.org/10.48550/arXiv.1904.03797

    Article  Google Scholar 

  32. Zhu B.J., Wang J.F., Jiang Z.K., Zong F.H., Liu S.T., Li Z.M., Sun J.: AutoAssign: differentiable label assignment for dense object detection. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition (2020) https://doi.org/10.48550/arXiv.2007.03496

Download references

Acknowledgements

The work described in this paper was partially supported by the Project of Science and Technology on Near-Surface Detection Laboratory of China (Grant No. TCGZ2019A006).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Congqing Wang.

Ethics declarations

Conflict of interest

All authors certify that they have no affiliations with or involvement in any organization or entity with any financial interest or non-financial interest in the subject matter or materials discussed in this manuscript.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, B., Wang, C., Liu, Y. et al. An anchor-based convolutional network for the near-surface camouflaged personnel detection of UAVs. Vis Comput 40, 1659–1671 (2024). https://doi.org/10.1007/s00371-023-02877-z

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00371-023-02877-z

Keywords

Navigation