Skip to main content
Log in

Region-guided network with visual cues correction for infrared small target detection

  • Original article
  • Published:
The Visual Computer Aims and scope Submit manuscript

Abstract

Infrared small target detection (IRSTD) has experienced fast developments in recent years and been widely applied in civilian and military fields. The long imaging distance and complex backgrounds of infrared images often make the interested targets present in small scales and lack of contour features, which poses great challenges for the detection. Though deep neural network-based methods have been thoroughly investigated in IRSTD, deep layers generally struggle to retain the visual details and positions of small targets, aggravating the miss detection and false alarms. To address the above issue, we propose a Region-Guided Network with visual cues correction (RGNet) for IRSTD. More specifically, we design a Region Guidance Module embedded in shallow layers to generate the foreground mask by leveraging rich visual details contained in low-level features. The obtained mask then guides the re-weighting of deep feature maps to highlight the targets for further localization. Considering noisy signals in backgrounds tend to increase the false alarms of small targets, we propose a Visual Cues Correction Module, which extracts the regional features from low-level features by referring to the predicted positions of initial results, and conducts a binary classification to rule out the negative detection. Since the open-sourced IRSTD datasets are limited, we utilize both public and collected data for the evaluation. Both multi-target and single-target cases are investigated, and comprehensive experimental results indicate that compared to state-of-art models, our method achieves the overall best performance in both scenarios.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

Data availability

The dataset for infrared detection and tracking of dim-small aircraft targets under ground/air background are available in:  http://www.csdata.org/p/387/. If you want to use the IRSTD-20 dataset, please contact us.

References

  1. Huang, S., Liu, Y., He, Y., Zhang, T., Peng, Z.: Structure-adaptive clutter suppression for infrared small target detection: chain-growth filtering. Remote. Sens. 12(1), 47 (2020)

    Article  CAS  ADS  Google Scholar 

  2. Mo, W., Pei, J.: Sea-sky line detection in the infrared image based on the vertical grayscale distribution feature. Vis. Comput. 1–13 (2022)

  3. Corbane, C., Marre, F., Petit, M.: Using spot-5 HRG data in panchromatic mode for operational detection of small ships in tropical area. Sensors 8(5), 2959–2973 (2008)

    Article  PubMed  PubMed Central  ADS  Google Scholar 

  4. Ma, T., Yang, Z., Wang, J., Sun, S., Ren, X., Ahmad, U.: Infrared small target detection network with generate label and feature mapping. IEEE Geosci. Remote Sens. Lett. 19, 1–5 (2022)

    Google Scholar 

  5. Sun, Y., Yang, J., An, W.: Infrared dim and small target detection via multiple subspace learning and spatial-temporal patch-tensor model. IEEE Trans. Geosci. Remote Sens. 59(5), 3737–3752 (2021)

    Article  ADS  Google Scholar 

  6. Wang, C., Wang, T., Wang, E., Sun, E., Luo, Z.: Flying small target detection for anti-UAV based on a gaussian mixture model in a compressive sensing domain. Sensors 19(9), 2168 (2019)

    Article  PubMed  PubMed Central  ADS  Google Scholar 

  7. Rivest, J.-F., Fortin, R.: Detection of dim targets in digital infrared imagery by morphological image processing. Opt. Eng. 35(7), 1886–1893 (1996)

    Article  ADS  Google Scholar 

  8. Deshpande, S.D., Er, M.H., Venkateswarlu, R., Chan, P.: Max-mean and max-median filters for detection of small targets. In: Signal and Data Processing of Small Targets 1999, vol. 3809, pp. 74–83 (1999)

  9. Zhao, K., Kong, X.: Background noise suppression in small targets infrared images and its method discussion. Opt. Optoelectron. Technol. 2(2), 9–12 (2004)

    Google Scholar 

  10. Wang, X., Peng, Z., Zhang, P., He, Y.: Infrared small target detection via nonnegativity-constrained variational mode decomposition. IEEE Geosci. Remote Sens. Lett. 14(10), 1700–1704 (2017)

    Article  ADS  Google Scholar 

  11. Tan, A., Liao, H., Zhang, B., Gao, M., Li, S., Bai, Y., Liu, Z.: Infrared image enhancement algorithm based on detail enhancement guided image filtering. Vis. Comput. 1–12 (2022)

  12. Chen, C.L.P., Li, H., Wei, Y., Xia, T., Tang, Y.Y.: A local contrast method for small infrared target detection. IEEE Trans. Geosci. Remote Sens. 52(1), 574–581 (2014)

    Article  ADS  Google Scholar 

  13. Wei, Y., You, X., Li, H.: Multiscale patch-based contrast measure for small infrared target detection. Pattern Recognit. 58, 216–226 (2016)

    Article  ADS  Google Scholar 

  14. Deng, H., Sun, X., Liu, M., Ye, C., Zhou, X.: Small infrared target detection based on weighted local difference measure. IEEE Trans. Geosci. Remote Sens. 54(7), 4204–4214 (2016)

    Article  ADS  Google Scholar 

  15. Nie, J., Qu, S., Wei, Y., Zhang, L., Deng, L.: An infrared small target detection method based on multiscale local homogeneity measure. Infrared Phys. Technol. 90, 186–194 (2018)

    Article  ADS  Google Scholar 

  16. Gao, C., Meng, D., Yang, Y., Wang, Y., Zhou, X., Hauptmann, A.G.: Infrared patch-image model for small target detection in a single image. IEEE Trans. Image Process. 22(12), 4996–5009 (2013)

    Article  MathSciNet  PubMed  ADS  Google Scholar 

  17. Dai, Y., Wu, Y., Song, Y.: Infrared small target and background separation via column-wise weighted robust principal component analysis. Infrared Phys. Technol. 77, 421–430 (2016)

    Article  CAS  ADS  Google Scholar 

  18. Dai, Y., Wu, Y.: Reweighted infrared patch-tensor model with both nonlocal and local priors for single-frame small target detection. IEEE J. Sel. Top. Appl. Earth Obs. Remote. Sens. 10(8), 3752–3767 (2017)

  19. Dai, Y., Wu, Y., Song, Y., Guo, J.: Non-negative infrared patch-image model: Robust target-background separation via partial sum minimization of singular values. Infrared Phys. Technol. 81, 182–194 (2017)

    Article  ADS  Google Scholar 

  20. Yin, W., He, K., Xu, D., Yue, Y., Luo, Y.: Adaptive low light visual enhancement and high-significant target detection for infrared and visible image fusion. Vis. Comput. 1–20 (2023)

  21. Dai, Y., Wu, Y., Zhou, F., Barnard, K.: Asymmetric contextual modulation for infrared small target detection. In: IEEE Winter Conference on Applications of Computer Vision, WACV 2021, Waikoloa, HI, USA, January 3–8, 2021, pp. 949–958 (2021)

  22. Dai, Y., Wu, Y., Zhou, F., Barnard, K.: Attentional local contrast networks for infrared small target detection. IEEE Trans. Geosci. Remote Sens. 59(11), 9813–9824 (2021)

    Article  ADS  Google Scholar 

  23. Li, B., Xiao, C., Wang, L., Wang, Y., Lin, Z., Li, M., An, W., Guo, Y.: Dense nested attention network for infrared small target detection. CoRR arXiv:2106.00487 (2021)

  24. Zhang, T., Cao, S., Pu, T., Peng, Z.: AGPCNet: attention-guided pyramid context networks for infrared small target detection. CoRR arXiv:2111.03580 (2021)

  25. Chen, F., Gao, C., Liu, F., Zhao, Y., Zhou, Y., Meng, D., Zuo, W.: Local patch network with global attention for infrared small target detection. IEEE Trans. Aerosp. Electron. Syst. 58(5), 3979–3991 (2022)

    Article  ADS  Google Scholar 

  26. Wang, H., Zhou, L., Wang, L.: Miss detection vs. false alarm: Adversarial learning for small object segmentation in infrared images. In: 2019 IEEE/CVF International Conference on Computer Vision, ICCV 2019, Seoul, Korea (South), October 27–November 2, 2019, pp. 8508–8517 (2019)

  27. Wang, K., Du, S., Liu, C., Cao, Z.: Interior attention-aware network for infrared small target detection. IEEE Trans. Geosci. Remote Sens. 60, 1–13 (2022)

    Google Scholar 

  28. Zhang, M., Zhang, R., Yang, Y., Bai, H., Zhang, J., Guo, J.: ISNet: shape matters for infrared small target detection. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 877–886 (2022)

  29. Zhang, M., Zhang, R., Zhang, J., Guo, J., Li, Y., Gao, X.: Dim2Clear network for infrared small target detection. IEEE Trans. Geosci. Remote Sens. (2023)

  30. Liu, M., Du, H., Zhao, Y., Dong, L., Hui, M., Wang, S.: Image small target detection based on deep learning with snr controlled sample generation. Current Trends Comput. Sci. Mech. Autom. 1, 211–220 (2017)

    Google Scholar 

  31. McIntosh, B., Venkataramanan, S., Mahalanobis, A.: Infrared target detection in cluttered environments by maximization of a target to clutter ratio (TCR) metric using a convolutional neural network. IEEE Trans. Aerosp. Electron. Syst. 57(1), 485–496 (2021)

    Article  ADS  Google Scholar 

  32. Ding, L., Xu, X., Cao, Y., Zhai, G., Yang, F., Qian, L.: Detection and tracking of infrared small target by jointly using SSD and pipeline filter. Digit. Signal Process. 110, 102949 (2021)

    Article  Google Scholar 

  33. Ju, M., Luo, J., Liu, G., Luo, H.: ISTDet: an efficient end-to-end neural network for infrared small target detection. Infrared Phys. Technol. 114, 103659 (2021)

    Article  Google Scholar 

  34. Zhou, X., Jiang, L., Hu, C., Lei, S., Zhang, T., Mou, X.: YOLO-SASE: an improved YOLO algorithm for the small targets detection in complex backgrounds. Sensors 22(12), 4600 (2022)

    Article  PubMed  PubMed Central  ADS  Google Scholar 

  35. Lu, T., Zhang, J., Lin, Y., Zeng, D.: Mask-guided infrared small multi-target detection via coarse-to-fine candidate selection. Opt. Quant. Electron. 55(1), 56 (2023)

    Article  Google Scholar 

  36. Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. CoRR arXiv:1505.04597 (2015)

  37. Wang, X., Hua, Z., Li, J.: Cross-UNet: dual-branch infrared and visible image fusion framework based on cross-convolution and attention mechanism. Vis. Comput. 1–18 (2022)

  38. Ren, S., He, K., Girshick, R.B., Sun, J.: Faster R-CNN: towards real-time object detection with region proposal networks. IEEE Trans. Pattern Anal. Mach. Intell. 39(6), 1137–1149 (2017)

    Article  PubMed  Google Scholar 

  39. Wang, G., Gan, X., Cao, Q., Zhai, Q.: MFANet: multi-scale feature fusion network with attention mechanism. Vis. Comput. 1–12 (2022)

  40. Liu, W., Anguelov, D., Erhan, D., Szegedy, C., Reed, S., Fu, C.-Y., Berg, A.C.: SSD: single shot multibox detector. In: Computer Vision–ECCV 2016: 14th European Conference, Amsterdam, The Netherlands, October 11–14, 2016, Proceedings, Part I 14, pp. 21–37 (2016)

  41. Redmon, J., Farhadi, A.: YOLOv3: an incremental improvement. CoRR arXiv:1804.02767 (2018)

  42. Wu, W., Liu, H., Li, L., Long, Y., Wang, X., Wang, Z., Li, J., Chang, Y.: Application of local fully convolutional neural network combined with YOLOv5 algorithm in small target detection of remote sensing image. PLoS ONE 16(10), 0259283 (2021)

    Article  Google Scholar 

  43. Ge, Z., Liu, S., Wang, F., Li, Z., Sun, J.: YOLOX: exceeding YOLO series in 2021. CoRR arXiv:2107.08430 (2021)

  44. Shi, M., Wang, H.: Infrared dim and small target detection based on denoising autoencoder network. Mob. Netw. Appl. 25(4), 1469–1483 (2020)

    Article  MathSciNet  Google Scholar 

  45. Dhengre, N., Sinha, S.: K sparse autoencoder-based accelerated reconstruction of magnetic resonance imaging. Vis. Comput. 38(3), 837–847 (2022)

    Article  Google Scholar 

  46. Zhang, J., Cai, Z., Chen, F., Zeng, D.: Hyperspectral image denoising via adversarial learning. Remote. Sens. 14(8), 1790 (2022)

    Article  ADS  Google Scholar 

  47. Song, H., Wang, M., Zhang, L., Li, Y., Jiang, Z., Yin, G.: S\(^{2}\)RGAN: sonar-image super-resolution based on generative adversarial network. Vis. Comput. 37, 2285–2299 (2021)

    Article  Google Scholar 

  48. Yang, M., Ma, T., Tian, Q., Tian, Y., Al-Dhelaan, A., Al-Dhelaan, M.: Aggregated squeeze-and-excitation transformations for densely connected convolutional networks. Vis. Comput. 38(8), 2661–2674 (2022)

    Article  Google Scholar 

  49. Li, H., Wang, N., Ding, X., Yang, X., Gao, X.: Adaptively learning facial expression representation via CF labels and distillation. IEEE Trans. Image Process. 30, 2016–2028 (2021)

    Article  PubMed  ADS  Google Scholar 

  50. Hui, B., Song, Z., Fan, H., Zhong, P., Hu, W., Zhang, X., Ling, J., Su, H., Jin, W., Zhang, Y., et al.: A dataset for infrared detection and tracking of dim-small aircraft targets under ground/air background. China Sci. Data 5(3), 291–302 (2020)

    Google Scholar 

Download references

Funding

This work was supported in part by the National Natural Science Foundation of China under Grant No. 62202283.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dan Zeng.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, J., Li, D., Jiang, H. et al. Region-guided network with visual cues correction for infrared small target detection. Vis Comput 40, 1915–1930 (2024). https://doi.org/10.1007/s00371-023-02892-0

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00371-023-02892-0

Keywords