Skip to main content
Log in

LCH: fast RGB-D salient object detection on CPU via lightweight convolutional network with hybrid knowledge distillation

  • Original article
  • Published:
The Visual Computer Aims and scope Submit manuscript

Abstract

Recently, the performance of RGB-D salient object detection (SOD) has been significantly improved with the development of deep-learning techniques. However, most of them depend on complex structures with a large amount of parameters and multi-add operations, which need huge computational resources and are not applicable to real-world applications, especially on mobile devices. To handle this problem, we propose a lightweight network, namely LCH, for RGB-D SOD. Specifically, we first design a novel lightweight ghost in ghost (GiG) module to enable a more powerful multi-scale feature extraction, which not only efficiently tackles the scale variations of salient objects but also guarantees a high inference speed. Then, the proposed GiG module works in conjunction with ghost bottlenecks (G-bneck) and, therefore, forms a new lightweight U-Net structure network for fast CPU RGB-D SOD. Furthermore, to enhance the feature discriminability of our LCH, we also design a novel hybrid knowledge distillation approach (HKD), for which both semantic structure information and pixel-wise similarity information are transferred from a powerful state-of-the-art RGB-D SOD network to the proposed LCH model, so as to generate more satisfactory detection results. Compared with previous work, LCH owns 5.6x fewer parameters and achieves 5.4x faster inference speed on the CPU devices, but obtains comparable SOD performance. Extensive experiments are carried out on commonly-used RGB-D SOD datasets. Both qualitative and quantitative results prove the effectiveness of our proposed method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

The datasets generated during and/or analyzed during the current study are available at https://github.com/DengPingFan/D3NetBenchmark

References

  1. Liang, Y., Liu, H., Ma, N.: A novel deep network and aggregation model for saliency detection. Vis. Comput. 36(9), 1883–1895 (2020)

    Article  Google Scholar 

  2. Huang, K., Gao, S.: Image saliency detection via multi-scale iterative CNN. Vis. Comput. 36(7), 1355–1367 (2020)

    Article  Google Scholar 

  3. Wang, X., Wang, W., Bi, H., Wang, K.: Reverse collaborative fusion model for co-saliency detection. Vis. Comput. (2021). https://doi.org/10.1007/s00371-021-02231-1

    Article  Google Scholar 

  4. Liu, N., Zhang, N., Wan, K., Shao, L., Han, J.: Visual saliency transformer. In: International Conference on Computer Vision (ICCV) (2021)

  5. Han, J., Zhang, D., Wen, S., Guo, L., Liu, T., Li, X.: Two-stage learning to predict human eye fixations via SDAEs. IEEE Trans. Cybern. 46(2), 487–498 (2015)

    Article  PubMed  Google Scholar 

  6. Zhang, L., Li, X., Nie, L., Yang, Y., Xia, Y.: Weakly supervised human fixations prediction. IEEE Trans. Cybern. 46(1), 258–269 (2015)

    Article  PubMed  Google Scholar 

  7. Liu, N., Han, J.: A deep spatial contextual long-term recurrent convolutional network for saliency detection. IEEE Trans. Image Process. 27(7), 3264–3274 (2018)

    Article  MathSciNet  PubMed  ADS  Google Scholar 

  8. Ye, L., Liu, Z., Li, L., Shen, L., Bai, C., Wang, Y.: Salient object segmentation via effective integration of saliency and objectness. IEEE Trans. Multimed. 19(8), 1742–1756 (2017)

    Article  Google Scholar 

  9. Zhou, T., Fu, H., Gong, C., Shen, J., Shao, L., Porikli, F.: Multi-mutual consistency induced transfer subspace learning for human motion segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 10277–10286 (2020)

  10. Zhang, F., Liu, H., Cao, C., Cai, Q., Zhang, D.: Rvlsm: robust variational level set method for image segmentation with intensity inhomogeneity and high noise. Inf. Sci. 596, 439–459 (2022)

    Article  Google Scholar 

  11. Li, X., Zhou, T., Li, J., Zhou, Y., Zhang, Z.: Group-wise semantic mining for weakly supervised semantic segmentation. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 35, pp. 1984–1992 (2021)

  12. Wang, B., Zhang, X., Zhao, Y.: Exploring sub-action granularity for weakly supervised temporal action localization. IEEE Trans. Circuits Syst. Video Technol. 32(4), 2186–2198 (2021)

    Article  Google Scholar 

  13. Zhou, T., Li, L., Li, X., Feng, C.-M., Li, J., Shao, L.: Group-wise learning for weakly supervised semantic segmentation. IEEE Trans. Image Process. 31, 799–811 (2022)

    Article  PubMed  ADS  Google Scholar 

  14. Wang, B., Yang, L., Zhao, Y.: Polo: learning explicit cross-modality fusion for temporal action localization. IEEE Signal Process. Lett. 28, 503–507 (2021)

    Article  ADS  Google Scholar 

  15. Zhou, T., Wang, S., Zhou, Y., Yao, Y., Li, J., Shao, L.: Motion-attentive transition for zero-shot video object segmentation. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 34, pp. 13066–13073 (2020)

  16. Zhou, T., Li, J., Wang, S., Tao, R., Shen, J.: Matnet: motion-attentive transition network for zero-shot video object segmentation. IEEE Trans. Image Process. 29, 8326–8338 (2020)

    Article  ADS  Google Scholar 

  17. Zhou, T., Li, J., Li, X., Shao, L.: Target-aware object discovery and association for unsupervised video multi-object segmentation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 6985–6994 (2021)

  18. Wang, B., Hu, T., Li, B., Chen, X., Zhang, Z.: Gatector: a unified framework for gaze object prediction. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 19588–19597 (2022)

  19. Wang, B., Yang, K., Zhao, Y., Long, T., Li, X.: Prototype-based intent perception. IEEE Trans. Multimed. (2023). https://doi.org/10.1109/TMM.2023.3234817

    Article  Google Scholar 

  20. Chen, H., Li, Y.: Progressively complementarity-aware fusion network for RGB-D salient object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3051–3060 (2018)

  21. Chen, H., Li, Y., Li, Y.: Three-stream attention-aware network for RGB-D salient object detection. IEEE Trans. Image Process. 28(6), 2825–2835 (2019)

    Article  MathSciNet  ADS  Google Scholar 

  22. Chen, H., Li, Y., Su, D.: Multi-modal fusion network with multi-scale multi-path and cross-modal interactions for RGB-D salient object detection. Pattern Recogn. 86, 376–385 (2019)

    Article  ADS  Google Scholar 

  23. Howard, A.G., Zhu, M., Chen, B., Kalenichenko, D., Wang, W., Weyand, T., Andreetto, M., Adam, H.: Mobilenets: efficient convolutional neural networks for mobile vision applications. arXiv preprint arXiv:1704.04861 (2017)

  24. Zhang, X., Zhou, X., Lin, M., Sun, J.: Shufflenet: an extremely efficient convolutional neural network for mobile devices. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6848–6856 (2018)

  25. Han, K., Wang, Y., Tian, Q., Guo, J., Xu, C., Xu, C.: Ghostnet: more features from cheap operations. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1580–1589 (2020)

  26. Cheng, Y., Fu, H., Wei, X., Xiao, J., Cao, X.: Depth enhanced saliency detection method. In: International Conference on Internet Multimedia Computing and Service, pp. 23–27 (2014)

  27. Cong, R., Lei, J., Zhang, C., Huang, Q., Hou, C.: Saliency detection for stereoscopic images based on depth confidence analysis and multiple cues fusion. IEEE Signal Process. Lett. 23(6), 819–823 (2016)

    Article  ADS  Google Scholar 

  28. Chen, T., Lin, L., Liu, L., Luo, X., Li, X.: Disc: deep image saliency computing via progressive representation learning. IEEE Trans. Neural Netw. Learn. Syst. 27(6), 1135–1149 (2016)

    Article  MathSciNet  PubMed  Google Scholar 

  29. Deng, J., Dong, W., Socher, R., Li, L.J., Li, F.F.: Imagenet: a large-scale hierarchical image database. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 248–255 (2009)

  30. Piao, Y., Ji, W., Li, J., Zhang, M., Lu, H.: Depth-induced multi-scale recurrent attention network for saliency detection. In: Proceedings of the International Conference on Computer Vision, pp. 7254–7263 (2019)

  31. Zhang, M., Ren, W., Piao, Y., Rong, Z., Lu, H.: Select, supplement and focus for RGB-D saliency detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3472–3481 (2020)

  32. Fu, K., Fan, D.-P., Ji, G.-P., Zhao, Q.: JL-DCF: joint learning and densely-cooperative fusion framework for RGB-D salient object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3052–3062 (2020)

  33. Li, G., Liu, Z., Ling, H.: ICNet: information conversion network for RGB-D based salient object detection. IEEE Trans. Image Process. 29, 4873–4884 (2020)

    Article  ADS  Google Scholar 

  34. Liu, N., Zhang, N., Han, J.: Learning selective self-mutual attention for RGB-D saliency detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 13756–13765 (2020)

  35. Li, C., Cong, R., Kwong, S., Hou, J., Fu, H., Zhu, G., Zhang, D., Huang, Q.: ASIF-Net: attention steered interweave fusion network for RGB-D salient object detection. IEEE Trans. Cybern. 51(1), 88–100 (2020)

    Article  PubMed  Google Scholar 

  36. Chen, H., Li, Y., Su, D.: Discriminative cross-modal transfer learning and densely cross-level feedback fusion for RGB-D salient object detection. IEEE Trans. Cybern. 50(11), 4808–4820 (2019)

    Article  PubMed  Google Scholar 

  37. Gao, Y., Dai, M., Zhang, Q.: Cross-modal and multi-level feature refinement network for RGB-D salient object detection. Vis. Comput. (2022). https://doi.org/10.1007/s00371-022-02543-w

    Article  PubMed  PubMed Central  Google Scholar 

  38. Wang, J., Chen, S., Lv, X., Xu, X., Hu, X.: Guided residual network for RGB-D salient object detection with efficient depth feature learning. Vis. Comput. 38(5), 1803–1814 (2022)

    Article  Google Scholar 

  39. Liu, Z., Wang, Y., Tu, Z., Xiao, Y., Tang, B.: Tritransnet: RGB-D salient object detection with a triplet transformer embedding network. In: Proceedings of the 29th ACM International Conference on Multimedia, pp. 4481–4490 (2021)

  40. Liu, Z., Tan, Y., He, Q., Xiao, Y.: SwinNet: Swin transformer drives edge-aware RGB-D and RGB-T salient object detection. IEEE Trans. Circuits Syst. Video Technol. 32(7), 4486–4497 (2021)

    Article  Google Scholar 

  41. Zhang, N., Han, J., Liu, N.: Learning implicit class knowledge for RGB-D co-salient object detection with transformers. IEEE Trans. Image Process. 31, 4556–4570 (2022)

    Article  PubMed  ADS  Google Scholar 

  42. Liu, H., Zhang, J., Yang, K., Hu, X., Stiefelhagen, R.: Cmx: cross-modal fusion for RGB-X semantic segmentation with transformers. arXiv preprint arXiv:2203.04838 (2022)

  43. Wang, N., Gong, X.: Adaptive fusion for RGB-D salient object detection. IEEE Access 7, 55277–55284 (2019)

    Article  Google Scholar 

  44. Qu, L., He, S., Zhang, J., Tian, J., Tang, Y., Yang, Q.: RGBD salient object detection via deep fusion. IEEE Trans. Image Process. 26(5), 2274–2285 (2017)

    Article  MathSciNet  PubMed  ADS  Google Scholar 

  45. Fan, D.-P., Lin, Z., Zhang, Z., Zhu, M., Cheng, M.-M.: Rethinking RGB-D salient object detection: models, data sets, and large-scale benchmarks. IEEE Trans. Neural Netw. Learn. Syst. 32, 2075–2089 (2020)

    Article  Google Scholar 

  46. Wang, B., Zhao, Y., Li, X.: Multiple instance graph learning for weakly supervised remote sensing object detection. IEEE Trans. Geosci. Remote Sens. 60, 1–12 (2021)

    Google Scholar 

  47. Liu, Z., Duan, Q., Shi, S., Zhao, P.: Multi-level progressive parallel attention guided salient object detection for RGB-D images. Vis. Comput. 37, 529–540 (2021)

    Article  CAS  Google Scholar 

  48. Piao, Y., Rong, Z., Zhang, M., Ren, W., Lu, H.: A2dele: adaptive and attentive depth distiller for efficient RGB-D salient object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 9060–9069 (2020)

  49. Zhao, X., Zhang, L., Pang, Y., Lu, H., Zhang, L.: A single stream network for robust and real-time RGB-D salient object detection. In: European Conference on Computer Vision, pp. 646–662 (2020)

  50. Wang, X., Li, S., Chen, C., Fang, Y., Hao, A., Qin, H.: Data-level recombination and lightweight fusion scheme for RGB-D salient object detection. IEEE Trans. Image Process. 30, 458–471 (2020)

    Article  PubMed  ADS  Google Scholar 

  51. Sandler, M., Howard, A., Zhu, M., Zhmoginov, A., Chen, L.-C.: Mobilenetv2: inverted residuals and linear bottlenecks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4510–4520 (2018)

  52. Ma, N., Zhang, X., Zheng, H.-T., Sun, J.: Shufflenet v2: practical guidelines for efficient CNN architecture design. In: Proceedings of the European Conference on Computer Vision, pp. 116–131 (2018)

  53. Tan, M., Le, Q.: Efficientnet: rethinking model scaling for convolutional neural networks. In: Proceedings of the International Conference on Machine Learning, pp. 6105–6114 (2019)

  54. Howard, A., Sandler, M., Chu, G., Chen, L.-C., Chen, B., Tan, M., Wang, W., Zhu, Y., Pang, R., Vasudevan, V., et al.: Searching for mobilenetv3. In: Proceedings of the International Conference on Computer Vision, pp. 1314–1324 (2019)

  55. Yang, T.-J., Howard, A., Chen, B., Zhang, X., Go, A., Sandler, M., Sze, V., Adam, H.: Netadapt: platform-aware neural network adaptation for mobile applications. In: Proceedings of the European Conference on Computer Vision, pp. 285–300 (2018)

  56. Zhang, Q., Jiang, Z., Lu, Q., Han, J., Zeng, Z., Gao, S.-H., Men, A.: Split to be slim: an overlooked redundancy in vanilla convolution. arXiv preprint arXiv:2006.12085 (2020)

  57. Chen, G., Choi, W., Yu, X., Han, T., Chandraker, M.: Learning efficient object detection models with knowledge distillation. In: Advances in Neural Information Processing Systems, vol. 30, pp. 742–751 (2017)

  58. Liu, Y., Shu, C., Wang, J., Shen, C.: Structured knowledge distillation for dense prediction. IEEE Trans. Pattern Anal. Mach. Intell. (2020). https://doi.org/10.1109/TPAMI.2020.3001940

    Article  PubMed  Google Scholar 

  59. Saputra, M.R.U., de Gusmao, P.P., Almalioglu, Y., Markham, A., Trigoni, N.: Distilling knowledge from a deep pose regressor network. In: Proceedings of the International Conference on Computer Vision, pp. 263–272 (2019)

  60. Liu, Y., Chen, K., Liu, C., Qin, Z., Luo, Z., Wang, J.: Structured knowledge distillation for semantic segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2604–2613 (2019)

  61. Romero, A., Ballas, N., Kahou, S.E., Chassang, A., Gatta, C., Bengio, Y.: Fitnets: Hints for thin deep nets. arXiv preprint arXiv:1412.6550 (2014)

  62. Zagoruyko, S., Komodakis, N.: Paying more attention to attention: improving the performance of convolutional neural networks via attention transfer. arXiv preprint arXiv:1612.03928 (2016)

  63. Huang, Z., Wang, N.: Like what you like: knowledge distill via neuron selectivity transfer. arXiv preprint arXiv:1707.01219 (2017)

  64. Yim, J., Joo, D., Bae, J., Kim, J.: A gift from knowledge distillation: fast optimization, network minimization and transfer learning. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4133–4141 (2017)

  65. Mirzadeh, S.I., Farajtabar, M., Li, A., Levine, N., Matsukawa, A., Ghasemzadeh, H.: Improved knowledge distillation via teacher assistant. In: Proceedings of AAAI Conference on Artificial Intelligence, pp. 5191–5198 (2020)

  66. Liu, R., Yang, K., Liu, H., Zhang, J., Peng, K., Stiefelhagen, R.: Transformer-based knowledge distillation for efficient semantic segmentation of road-driving scenes. arXiv preprint arXiv:2202.13393 (2022)

  67. Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. In: Advances in Neural Information Processing Systems, vol. 30 (2017)

  68. Chen, Y., Wang, N., Zhang, Z.: Darkrank: accelerating deep metric learning via cross sample similarities transfer. arXiv preprint arXiv:1707.01220 (2017)

  69. Tian, Y., Krishnan, D., Isola, P.: Contrastive representation distillation. arXiv preprint arXiv:1910.10699 (2019)

  70. Feng, Y., Sun, X., Diao, W., Li, J., Gao, X.: Double similarity distillation for semantic image segmentation. IEEE Trans. Image Process. 30, 5363–5376 (2021)

    Article  PubMed  ADS  Google Scholar 

  71. An, S., Liao, Q., Lu, Z., Xue, J.-H.: Efficient semantic segmentation via self-attention and self-distillation. IEEE Trans. Intell. Transp. Syst. 23, 15256–15266 (2022)

    Article  Google Scholar 

  72. Hou, Y., Ma, Z., Liu, C., Hui, T.-W., Loy, C.C.: Inter-region affinity distillation for road marking segmentation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 12486–12495 (2020)

  73. Ji, D., Wang, H., Tao, M., Huang, J., Hua, X.-S., Lu, H.: Structural and statistical texture knowledge distillation for semantic segmentation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 16876–16885 (2022)

  74. Liu, N., Han, J.: Dhsnet: deep hierarchical saliency network for salient object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 678–686 (2016)

  75. Hou, Q., Cheng, M.-M., Hu, X., Borji, A., Tu, Z., Torr, P.H.: Deeply supervised salient object detection with short connections. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3203–3212 (2017)

  76. Liu, N., Han, J., Yang, M.-H.: Picanet: learning pixel-wise contextual attention for saliency detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3089–3098 (2018)

  77. Li, C., Cong, R., Piao, Y., Xu, Q., Loy, C.C.: RGB-D salient object detection with cross-modality modulation and selection. In: Computer Vision–ECCV 2020: 16th European Conference, Glasgow, UK, August 23–28, 2020, Proceedings, Part VIII 16, pp. 225–241 (2020). Springer

  78. Ju, R., Ge, L., Geng, W., Ren, T., Wu, G.: Depth saliency based on anisotropic center-surround difference. In: Proceedings of the International Conference on Image Processing, pp. 1115–1119 (2014)

  79. Peng, H., Li, B., Xiong, W., Hu, W., Ji, R.: RGBD salient object detection: a benchmark and algorithms. In: Proceedings of the European Conference on Computer Vision, pp. 92–109 (2014)

  80. Niu, Y., Geng, Y., Li, X., Liu, F.: Leveraging stereopsis for saliency analysis. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 454–461 (2012)

  81. Zhu, C., Li, G.: A three-pathway psychobiological framework of salient object detection using stereoscopic technology. In: Proceedings of the International Conference on Computer Vision Workshop, pp. 3008–3014 (2017)

  82. Cheng, Y., Fu, H., Wei, X., Xiao, J., Cao, X.: Depth enhanced saliency detection method. In: Proceedings of International Conference on Internet Multimedia Computing and Service, pp. 23–27 (2014)

  83. Li, N., Ye, J., Ji, Y., Ling, H., Yu, J.: Saliency detection on light field. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2806–2813 (2014)

  84. Liu, N., Zhang, N., Shao, L., Han, J.: Learning selective mutual attention and contrast for RGB-D saliency detection. IEEE Trans. Pattern Anal. Mach. Intell. 44(12), 9026–9042 (2021)

    Article  Google Scholar 

  85. Zhai, Y., Fan, D.-P., Yang, J., Borji, A., Shao, L., Han, J., Wang, L.: Bifurcated backbone strategy for RGB-D salient object detection. arXiv preprint arXiv:2007.02713 (2020)

  86. Fu, K., Fan, D.-P., Ji, G.-P., Zhao, Q., Shen, J., Zhu, C.: Siamese network for RGB-D salient object detection and beyond. arXiv preprint arXiv:2008.12134 (2020)

  87. Fan, D.-P., Cheng, M.-M., Liu, Y., Li, T., Borji, A.: Structure-measure: a new way to evaluate foreground maps. In: Proceedings of the International Conference on Computer Vision, pp. 4548–4557 (2017)

  88. Borji, A., Cheng, M.-M., Jiang, H., Li, J.: Salient object detection: a benchmark. IEEE Trans. Image Process. 24(12), 5706–5722 (2015)

    Article  MathSciNet  PubMed  ADS  Google Scholar 

  89. Fan, D.-P., Gong, C., Cao, Y., Ren, B., Cheng, M.-M., Borji, A.: Enhanced-alignment measure for binary foreground map evaluation. In: Proceedings of International Joint Conference on Artificial Intelligence, pp. 698–704 (2018)

  90. Perazzi, F., Krähenbühl, P., Pritch, Y., Hornung, A.: Saliency filters: contrast based filtering for salient region detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 733–740 (2012)

  91. Zhang, J., Fan, D.-P., Dai, Y., Anwar, S., Sadat Saleh, F., Zhang, T., Barnes, N.: Uc-net: uncertainty inspired RGB-D saliency detection via conditional variational autoencoders. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 8582–8591 (2020)

  92. Zhou, T., Fu, H., Chen, G., Zhou, Y., Fan, D.-P., Shao, L.: Specificity-preserving RGB-D saliency detection. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4681–4691 (2021)

  93. Peng, P., Yang, K.-F., Li, Y.-J.: Global-prior-guided fusion network for salient object detection. Expert Syst. Appl. 198, 116805 (2022)

    Article  Google Scholar 

  94. Zhao, J.-X., Cao, Y., Fan, D.-P., Cheng, M.-M., Li, X.-Y., Zhang, L.: Contrast prior and fluid pyramid integration for RGBD salient object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3927–3936 (2019)

  95. Gao, S.-H., Cheng, M.-M., Zhao, K., Zhang, X.-Y., Yang, M.-H., Torr, P.: Res2net: a new multi-scale backbone architecture. IEEE Trans. Pattern Anal. Mach. Intell. 43(2), 652–662 (2019)

    Article  Google Scholar 

  96. Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin, S., Guo, B.: Swin transformer: hierarchical vision transformer using shifted windows. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 10012–10022 (2021)

  97. Chen, Y., Dai, X., Chen, D., Liu, M., Dong, X., Yuan, L., Liu, Z.: Mobile-former: bridging mobilenet and transformer. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5270–5279 (2022)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fan Zhang.

Ethics declarations

Conflict of interest

When writing the manuscript, we considered all ethical concerns and followed all guidelines to the best of our ability. The authors declare that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, B., Zhang, F. & Zhao, Y. LCH: fast RGB-D salient object detection on CPU via lightweight convolutional network with hybrid knowledge distillation. Vis Comput 40, 1997–2014 (2024). https://doi.org/10.1007/s00371-023-02898-8

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00371-023-02898-8

Keywords

Navigation