Skip to main content
Log in

Robust interval type-2 kernel-based possibilistic fuzzy deep local information clustering driven by Lambert-W function

  • Original article
  • Published:
The Visual Computer Aims and scope Submit manuscript

Abstract

Interval type-2 fuzzy sets not only have stronger ability to deal with uncertainty, but also have low computational complexity than general type-2 fuzzy set, so they are widely used in fuzzy clustering methods. However, most existing interval type-2 fuzzy clustering methods are still sensitive to noise and lack a certain degree of robustness in segmenting images with noise. Therefore, this paper proposes a novel interval type-2 enhanced kernel possibilistic fuzzy local and non-local information c-means clustering method for segmenting images with high noise. Interval type-2 possibilistic fuzzy clustering with Lambert-W function is first extended to obtain a novel interval type-2 enhanced possibilistic fuzzy clustering with product partition. Then deep local neighborhood information including local and non-local information is used to constrain interval type-2 enhanced possibilistic fuzzy product partition c-means clustering, and a robust interval type-2 enhanced possibilistic fuzzy deep local information clustering with kernel metric is proposed. Experimental results demonstrate that the proposed algorithm significantly outperforms the latest fuzzy clustering-related algorithms in the presence of high noise.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29
Fig. 30
Fig. 31
Fig. 32
Fig. 33
Fig. 34
Fig. 35
Fig. 36
Fig. 37

Similar content being viewed by others

Data Availability Statement

The authors confirm that the data supporting the findings of this study are available within the article.

References

  1. Cai, Y., Zhang, Z., Cai, Z., Liu, X., Jiang, X., Yan, Q.: Graph convolutional subspace clustering: A robust subspace clustering framework for hyperspectral image. IEEE Trans. Geosci. Remote Sensing. 59(5), 4191–4202 (2021). https://doi.org/10.1109/TGRS.2020.3018135

    Article  ADS  Google Scholar 

  2. Fan, T., Li, P., Qi, Z., Zhao, Z.: Borehole transient electromagnetic stereo imaging method based on horizontal component anomaly feature clustering. J. Appl. Geophys. 197, 104537 (2022). https://doi.org/10.1016/j.jappgeo.2022.104537

  3. Bezdek, J.C., Ehrlich, R., Full, W.: FCM: The fuzzy c-means clustering algorithm. Comput. Geosci. 10(2), 191–203 (1984). https://doi.org/10.1016/0098-3004(84)90020-7

    Article  ADS  Google Scholar 

  4. Dang, T.H., Mai, D.S., Ngo, L.T.: Multiple kernel collaborative fuzzy clustering algorithm with weighted super-pixels for satellite image land-cover classification. Eng. Appl. Artif. Intell. 85, 85–98 (2019). https://doi.org/10.1016/j.engappai.2019.05.004

    Article  Google Scholar 

  5. Cheng, H., Qian, Y., Wu, Y., Guo, Q., Li, Y.: Diversity-induced fuzzy clustering. Int. J. Approx. Reasoning. 106, 89–106 (2019). https://doi.org/10.1016/j.ijar.2018.12.010

    Article  MathSciNet  Google Scholar 

  6. Mittal, H., Saraswat, M.: A new fuzzy cluster validity index for hyperellipsoid or hyperspherical shape close clusters with distant centroids. IEEE Trans. Fuzzy Syst. 29(11), 3249–3258 (2021). https://doi.org/10.1109/TFUZZ.2020.3016339

    Article  Google Scholar 

  7. Shirkhorshidi, A.S., Wah, T.Y., Shirkhorshidi, S.M.R., Aghabozorgi, S.: Evolving fuzzy clustering approach: an epoch clustering that enables heuristic postpruning. IEEE Trans. Fuzzy Syst. 29(3), 560–568 (2021). https://doi.org/10.1109/TFUZZ.2019.2956900

    Article  Google Scholar 

  8. Daranyi, A., Dorgo, G., Ruppert, T., Abonyi, J.: Processing indoor positioning data by goal-oriented supervised fuzzy clustering for tool management. J. Manuf. Syst. 63, 15–22 (2022). https://doi.org/10.1016/j.jmsy.2022.02.010

    Article  Google Scholar 

  9. Krishnapuram, R., Keller, J.M.: A possibilistic approach to clustering. IEEE Trans. Fuzzy Syst. 1, 98–110 (1993). https://doi.org/10.1109/91.227387

    Article  Google Scholar 

  10. Pal, N.R., Pal, K., Keller, J.M., Bezdek, J.C.: A possibilistic fuzzy c-means clustering algorithm. IEEE Trans. Fuzzy Syst. 13(4), 517–530 (2005). https://doi.org/10.1109/TFUZZ.2004.840099

    Article  Google Scholar 

  11. Szilágyi, L.: Fuzzy-possibilistic product partition: A novel robust approach to c-means clustering. Model. Decis. Artif. Intell.. 6820, 150–161 (2011). https://doi.org/10.1007/978-3-642-22589-5_15

    Article  Google Scholar 

  12. Cai, W., Chen, S., Zhang, D.: Fast and robust fuzzy c-means clustering algorithms incorporating local information for image segmentation. Pattern Recognit. 40(3), 825–838 (2007). https://doi.org/10.1016/j.patcog.2006.07.011

    Article  ADS  Google Scholar 

  13. Zhou, Y., Zou, X., Lan, G., Dai, X., Wen, Y.: A local spatial information and lp-norm based fuzzy c-means clustering for image segmentation. In: 2020 IEEE 3rd International Conference on Automation, Electronics and Electrical Engineering (AUTEEE), 2020, pp, 299–303. https://doi.org/10.1109/AUTEEE50969.2020.9315614

  14. Krinidis, S., Chatzis, V.: A robust fuzzy local information c-means clustering algorithm. IEEE Trans. Image Process. 19(5), 1328–1337 (2010). https://doi.org/10.1109/TIP.2010.2040763

    Article  MathSciNet  PubMed  ADS  Google Scholar 

  15. Gong, M., Zhou, Z., Ma, J.: Change detection in synthetic aperture radar images based on image fusion and fuzzy clustering. IEEE Trans. Image Process. 21(4), 2141–2151 (2012). https://doi.org/10.1109/TIP.2011.2170702

    Article  MathSciNet  PubMed  ADS  Google Scholar 

  16. Wu, C., Zhang, X.: A novel kernelized total Bregman divergence-based fuzzy clustering with local information for image segmentation. Int. J. Approx. Reasoning. 136, 281–305 (2021). https://doi.org/10.1016/j.ijar.2021.06.004

    Article  MathSciNet  Google Scholar 

  17. Zare, A., Young, N., Suen, D., Nabelek, T., Galusha, A., Keller, J.: Possibilistic fuzzy local information c-means for sonar image segmentation. In: IEEE Symposium Series on Computational Intelligence, 2017, pp, 1–8. https://doi.org/10.1109/SSCI.2017.8285358

  18. Gong, M., Liang, Y., Shi, J., Ma, W., Ma, J.: Fuzzy c-means clustering with local information and kernel metric for image segmentation. IEEE Trans. Image Process. 22(2), 53–584 (2013). https://doi.org/10.1109/TIP.2012.2219547

    Article  MathSciNet  Google Scholar 

  19. Memon, K.H., Memon, S., Qureshi, M.A., Alvi, M.B., Kumar, D., Shah, R.A.: Kernel possibilistic fuzzy c-means clustering with local information for image segmentation. Int. J. Fuzzy Syst. 21(1), 321–332 (2019). https://doi.org/10.1007/s40815-018-0537-9

    Article  Google Scholar 

  20. Zhang, X., Sun, Y., Liu, H., Hou, Z., Zhao, F., Zhang, C.: Improved clustering algorithms for image segmentation based on non-local information and back projection. Inf. Sci. 550(6), 129–144 (2020). https://doi.org/10.1016/j.ins.2020.10.039

    Article  MathSciNet  Google Scholar 

  21. Ruiz-García, G., Hagras, H., Pomares, H., Ruiz, I.R.: Toward a fuzzy logic system based on general forms of interval type-2 fuzzy sets. IEEE Trans. Fuzzy Syst. 27(12), 2381–2395 (2019). https://doi.org/10.1109/TFUZZ.2019.2898582

    Article  Google Scholar 

  22. Shen, Y., Pedrycz, W., Wang, X.: Approximation of fuzzy sets by interval type-2 trapezoidal fuzzy sets. IEEE T. Cybern. 50(11), 4722–4734 (2020). https://doi.org/10.1109/TCYB.2018.2886725

    Article  Google Scholar 

  23. Hwang, C., Rhee, C.H.: Uncertain fuzzy clustering: interval type-2 fuzzy approach to c-means. IEEE Trans. Fuzzy Syst 15, 107–120 (2007). https://doi.org/10.1109/TFUZZ.2006.889763

    Article  Google Scholar 

  24. Ji, Z., Xia, Y., Sun, Q., Cao, G.: Interval-valued possibilistic fuzzy c-means clustering algorithm. Fuzzy Sets Syst. 253, 138–156 (2014). https://doi.org/10.1016/j.fss.2013.12.011

    Article  MathSciNet  Google Scholar 

  25. Sotudian, S., Zaradi, M.H.F.: Interval type-2 enhanced possibilistic fuzzy c-means clustering for gene expression data analysis. https://arxiv.org/ftp/arxiv/papers/2101/2101.00304.pdf.

  26. Zhang, A., Jiang, G., Zhang, Y.: Remote sensing image change detection based on an adaptive interval type-2 fuzzy clustering. J. Geomatics Sci. Technol. 35(4), 376–382 (2018)

    Google Scholar 

  27. Hu, F., Chen, H., Wang, X.: An intuitionistic kernel-based fuzzy c-means clustering algorithm with local information for power equipment image segmentation. IEEE Access. 8, 4500–4514 (2020). https://doi.org/10.1109/ACCESS.2019.2963444

    Article  Google Scholar 

  28. Zadeh, L.A.: The concept of a linguistic variable and its application to approximate reasoning-I. Inf. Sci. 8(3), 199–249 (1975). https://doi.org/10.1016/0020-0255(75)90036-5

    Article  MathSciNet  Google Scholar 

  29. Mendel, J.M.: Computing derivatives in interval type-2 fuzzy logic systems. IEEE Trans. Fuzzy Syst. 12(1), 84–98 (2004). https://doi.org/10.1109/TFUZZ.2003.822681

    Article  Google Scholar 

  30. Karnik, N.N., Mendel, J.M.: Centroid of a type-2 fuzzy set. Inf. Sci. 132(1), 195–220 (2001). https://doi.org/10.1016/S0020-0255(01)00069-X

    Article  MathSciNet  Google Scholar 

  31. Lv, G., Chi, Q., Awrangjeb, M., Li, J.: Robust registration of multispectral satellite images based on structural and geometrical similarity. IEEE Geosci. Remote Sens. Lett. 19, 1–5 (2022). https://doi.org/10.1109/LGRS.2021.3093502

    Article  Google Scholar 

  32. Tang, Y.M., Ren, F.J., Pedrycz, W.: Fuzzy C-means clustering through SSIM and patch for image segmentation. Appl. Soft Comput. 87, 105928 (2020). https://doi.org/10.1016/j.asoc.2019.105928

  33. Maji, P., Garai, P.: Rough hypercuboid based generalized and robust IT2 fuzzy c-means algorithm. IEEE T. Cybern. 51(7), 3641–3652 (2021). https://doi.org/10.1109/TCYB.2019.2925130

    Article  Google Scholar 

  34. Wu, C., Guo, X.: A novel interval-valued data driven type-2 possibilistic local information c-means clustering for land cover classification. Int. J. Approx. Reasoning. 148, 80–116 (2022). https://doi.org/10.1016/j.ijar.2022.05.007

    Article  MathSciNet  Google Scholar 

  35. Alruwaili, M., Siddiqi, M.H., Javed, M.A.: A robust clustering algorithm using spatial fuzzy c-means for brain MR images. Egypt. Inform. J. 21(1), 51–66 (2020). https://doi.org/10.1016/j.eij.2019.10.005

    Article  Google Scholar 

  36. Zhang, J., Qi, J., Zheng, Z., Sun, L.: A robust image segmentation framework based on total variation spectral transform. Pattern Recognit. Lett. 153, 159–167 (2022). https://doi.org/10.1016/j.patrec.2021.12.001

    Article  ADS  Google Scholar 

  37. Shen, L., Zhu, W., Wang, X., Xing, L., Pauly, J.M.: Multi-Domain image completion for random missing input data. IEEE Trans. Med. Imaging. 40(4), 1113–1122 (2021). https://doi.org/10.1109/TMI.2020.3046444

    Article  PubMed  PubMed Central  Google Scholar 

  38. Yuan, Y., Lo, Y.C.: Improving dermoscopic image segmentation with enhanced convolutional-deconvolutional networks. IEEE J. Biomed. Health Inform. 23(2), 519–526 (2019). https://doi.org/10.1109/JBHI.2017.2787487

    Article  MathSciNet  PubMed  Google Scholar 

  39. Li, H., Li, Y., Zhang, G., Liu, R., Huang, H., Zhu, Q., Tao, C.: Global and local contrastive self-supervised learning for semantic segmentation of HR remote sensing. IEEE Trans. Geosci. Remote Sensing. 60, 5618014 (2022). https://doi.org/10.1109/TGRS.2022.3147513

    Article  Google Scholar 

  40. https://www2.eecs.berkeley.edu/Research/Projects/CS/vision/bsds/

  41. http://www.escience.cn/people/JunweiHan/NWPU-RESISC45.html

  42. https://www.kaggle.com/preetviradiya/brian-tumor-dataset

  43. https://cocodataset.org

  44. https://medpix.nlm.nih.gov/home

  45. Wang, Q., Wang, X., Fang, C., Jiao, J.: Fuzzy image clustering incorporating local and region-level information with median memberships, Appl. Soft. Comput. 105 (2021) 107245. https://doi.org/10.1016/j.asoc.2021.107245

  46. Wang, Q., Wang, X., Fang, C., Yang, W.: Robust fuzzy c-means clustering algorithm with adaptive spatial and intensity constraint and membership linking for noise image segmentation. Appl. Soft. Comput. 92, 106318 (2020). https://doi.org/10.1016/j.asoc.2020.106318

  47. Lei, T., Jia, X., Zhang, Y.: Significantly fast and robust fuzzy c-means clustering algorithm based on morphological reconstruction and membership filtering. IEEE Trans. Fuzzy Syst. 25(5), 3027–3041 (2018). https://doi.org/10.1109/TFUZZ.2018.2796074

    Article  Google Scholar 

  48. Tang, Y., Ren, F., Pedrycz, W.: Fuzzy c-means clustering through SSIM and patch for image segmentation. Appl. Soft. Comput. 87, 105928 (2020). https://doi.org/10.1016/j.asoc.2019.105928

  49. Nawaz, M., Yan, H.: Saliency detection via multiple-morphological and superpixel based fast fuzzy c-mean clustering network. Expert Syst. Appl. 161 (15), 113654 (2020). https://doi.org/10.1016/j.eswa.2020.113654

  50. Chui, K.T., Lytras, M.D., Vasant, P.: Combined generative adversarial network and fuzzy C-means clustering for multi-class voice disorder detection with an imbalanced dataset. Appl. Sci. 10(13), 4571 (2020). https://doi.org/10.3390/app10134571

    Article  CAS  Google Scholar 

  51. Nguyen, R., Singh, S.K., Rai, R.: FuzzyGAN: Fuzzy generative adversarial networks for regression tasks. Neurocomputing 525, 88–110 (2023). https://doi.org/10.1016/j.neucom.2023.01.015

    Article  Google Scholar 

  52. Tan, J., Liao, X., Liu, J., Cao, Y., Jiang, H.: Channel attention image steganography with generative adversarial networks. IEEE Trans. Netw. Sci. Eng. 9(2), 888–903 (2022). https://doi.org/10.1109/TNSE.2021.3139671

    Article  Google Scholar 

  53. Li, Y., You, J., Zhou, J., Wang, W., Liao, X., Li, X.: Image operation chain detection with machine translation framework. IEEE Trans. Multimedia. (2022) (online), https://doi.org/10.1109/TMM.2022.3215000

  54. Liao, X., Huang, Z., Peng, L., Qiao, T.: First step towards parameters estimation of image operator chain. Inf. Sci. 575, 231–247 (2021). https://doi.org/10.1016/j.ins.2021.06.045

    Article  MathSciNet  Google Scholar 

  55. Barni, B., Costanzo, A.: A fuzzy approach to deal with uncertainty in image forensics. Image Commun. 27(9), 998–1010 (2012). https://doi.org/10.1016/j.image.2012.07.006

    Article  Google Scholar 

  56. Sushir, R.D., Wakde, D.G.: An improved detection of blind image forgery using hybrid deep belief network and adaptive fuzzy clustering. Multimed. Tools Appl. 81, 29177–29205 (2022). https://doi.org/10.1007/s11042-022-12923-y

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (62071378), and the Shaanxi Natural Science Foundation of China (2022JM-370). The authors would like to thank the anonymous reviewers for their constructive suggestions to improve the overall quality of the paper. Besides, the authors would like to thank the School of Electronic Engineering, Xi’an University of Posts & Telecommunications, Xi’an, China for financially support.

Author information

Authors and Affiliations

Authors

Contributions

CW: Conceptualization, Data curation, Funding acquisition, Methodology, Project administration, Resources, Supervision, Validation, Visualization. SP: Formal analysis, Investigation, Software, Writing—original draft, Writing—review & editing. XZ: Formal analysis, Investigation, Software, Writing-review.

Corresponding author

Correspondence to Siyun Peng.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, C., Peng, S. & Zhang, X. Robust interval type-2 kernel-based possibilistic fuzzy deep local information clustering driven by Lambert-W function. Vis Comput 40, 2161–2201 (2024). https://doi.org/10.1007/s00371-023-02910-1

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00371-023-02910-1

Keywords

Navigation