Skip to main content
Log in

A data-centric unsupervised 3D mesh segmentation method

  • Original article
  • Published:
The Visual Computer Aims and scope Submit manuscript

Abstract

In this paper, a novel data-centric approach is proposed for solving the 3D mesh segmentation problem. The method uses node2vec, a semi-supervised learning algorithm, to create vector embedding representations for each node in a 3D mesh graph. This makes the mesh data more compact and easier to process which is important for reducing computation costs. K-Means clustering is then used to cluster each node according to their node embedding information. This data-centric approach is more computationally efficient than other complex models such as CNN and RNN. The main contribution of this study is the development of a data-centric AI framework that combines node2vec embedding, machine learning, and deep learning techniques. The use of cosine similarity is also adapted to compare and evaluate the trained node embedding vectors with different hyperparameters. Additionally, a new algorithm is developed to determine the optimal cluster number using geodesic distance on the 3D mesh. Overall, this approach provides competitive results compared to existing mesh segmentation methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data availability

Data sharing not applicable to this article as no datasets were generated or analyzed during the current study.

References

  1. Abbasi, A., Kalkan, S., Sahillioğlu, Y.: Deep 3D semantic scene extrapolation. Vis. Comput. 35, 271–279 (2019)

    Article  Google Scholar 

  2. Ahmed, A., Shervashidze, N., Narayanamurthy, S., Josifovski, V., Smola, A. J.: Distributed large-scale natural graph factorization. In: Proceedings of the 22nd International Conference on World Wide Web, WWW ’13, pp. 37–48, New York, NY, USA. Association for Computing Machinery (2013)

  3. Anguelov, D., Srinivasan, P., Koller, D., Thrun, S., Rodgers, J., Davis, J.: Scape: shape completion and animation of people, vol. 24 (2005)

  4. Arthur, D., Vassilvitskii, S.: K-means++: the advantages of careful seeding. vol. 07, 09-January 2007 (2007)

  5. Bogo, F., Romero, J., Loper, M., Black, M. J.: FAUST: dataset and evaluation for 3D mesh registration. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition (2014)

  6. Cao, S., Lu, W., Xu, Q.: Grarep: learning graph representations with global structural information. CIKM ’15, pp. 891–900, New York, NY, USA. Association for Computing Machinery (2015)

  7. Cao, S., Lu, W., Xu, Q.: Deep neural networks for learning graph representations. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 30, issue 1 (Feb. 2016)

  8. Chen, H., Perozzi, B., Hu, Y., Skiena, S.: HARP: hierarchical representation learning for networks. CoRR, arXiv:1706.07845 (2017)

  9. Dong, Q., Wang, Z., Gao, J., Chen, S., Shu, Z., Xin, S.: Laplacian2mesh: Laplacian-based mesh understanding. IEEE Trans. Vis. Comput. Gr. (2022). https://doi.org/10.1109/TVCG.2023.3259044

    Article  Google Scholar 

  10. Fey, M., You, J., Ying, R., Li, G., Sunil, J., Lenssen, J. E., Bahtchevanov, I., Leskovec, J.: Pyg. https://www.pyg.org/

  11. Fouss, F., Pirotte, A., Renders, J.-M., Saerens, M.: Random-walk computation of similarities between nodes of a graph with application to collaborative recommendation. IEEE Trans. Knowl. Data Eng. 19(3), 355–369 (2007)

    Article  Google Scholar 

  12. Goyal, P., Ferrara, E.: Graph embedding techniques, applications, and performance: a survey. Knowl. Based Syst. 151, 78 (2018)

    Article  Google Scholar 

  13. Grover, A., Leskovec, J.: Node2vec: scalable feature learning for networks. In: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD ’16, pp. 855–864, New York, NY, USA. Association for Computing Machinery (2016)

  14. Hanocka, R., Hertz, A., Fish, N., Giryes, R., Fleishman, S., Cohen-Or, D.: Meshcnn: a network with an edge. ACM Trans. Gr. 38, 1–12 (2019)

    Google Scholar 

  15. Hogg, M.: Pygeodesic. https://pypi.org/project/pygeodesic/ (May 2021)

  16. Jiao, X., Chen, Y., Yang, X.: SCMS-Net: self-supervised clustering-based 3D meshes segmentation network. Comput. Aided Des. 160, 103512 (2023)

    Article  MathSciNet  Google Scholar 

  17. Katz, S., Tal, A.: Hierarchical mesh decomposition using fuzzy clustering and cuts. ACM Trans. Gr. (TOG) 22, 954–961 (2003)

    Article  Google Scholar 

  18. Khattab, D., Ebeid, H. M., Hussein, A. S., Tolba, M. F. 3d mesh segmentation based on unsupervised clustering. Adv. Intell. Syst. Comput. 533, 598–607 (2017)

  19. Kingma, D. P., Ba, J.: Adam: a method for stochastic optimization (2014)

  20. Kipf, T. N., Welling, M.: Semi-supervised classification with graph convolutional networks. CoRR, arXiv:1609.02907 (2016)

  21. Kipf, T. N., Welling, M.: Variational graph auto-encoders, (2016)

  22. Lahav, A., Tal, A.: Meshwalker: deep mesh understanding by random walks. ACM Trans. Gr. 39, 1–13 (2020)

    Article  Google Scholar 

  23. Lai, Y. K., Hu, S. M., Martin, R. R., Rosin, P. L.: Fast mesh segmentation using random walks. (2008)

  24. LeCun, Y., Bengio, Y., Hinton, G.: Deep learning. Nature 521(7553), 436–444 (2015)

    Article  Google Scholar 

  25. Luo, D., Ding, C., Nie, F., Huang, H.: Cauchy graph embedding. In: Proceedings of the 28th International Conference on Machine Learning, ICML 2011, pp. 553–560. Cited by: 87 (2011)

  26. Lv, J., Chen, X., Huangy, J., Bao, H.: Semi-supervised mesh segmentation and labeling. vol. 31, pp. 2241–2248 (2012)

  27. MacQueen, J. B.: K-means and analysis of multivariate observations. In: 5th Berkeley Symposium on Mathematical Statistics and Probability 1967, vol. 1, pp. 281–297 (1967)

  28. Mikolov,T., Chen, K., Corrado, G., Dean, J.: Efficient estimation of word representations in vector space (2013)

  29. Newman, M.J.: A measure of betweenness centrality based on random walks. Soc. Netw. 27(1), 39–54 (2005)

    Article  Google Scholar 

  30. Paszke, A., Gross, S., Chintala, S., Chanan, G., Yang, E., DeVito, Z., Lin, Z., Desmaison, A., Antiga, L., Lerer, A.: Automatic differentiation in pytorch. In :NIPS 2017 Workshop on Autodiff (2017)

  31. Perozzi, B., Al-Rfou, R., Skiena, S.: Deepwalk: online learning of social representations. In: Proceedings of the 20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD ’14, page 701–710, New York, NY, USA. Association for Computing Machinery (2014)

  32. Perozzi, B., Kulkarni, V., Skiena, S.: Walklets: multiscale graph embeddings for interpretable network classification. CoRR, arXiv:1605.02115 (2016)

  33. Roweis, S.T., Saul, L.K.: Nonlinear dimensionality reduction by locally linear embedding. Science 290(5500), 2323–2326 (2000)

    Article  Google Scholar 

  34. Sever, O. I.: Mesh segmentation from sparse face labels using graph convolutional neural networks. Master’s thesis, Middle East Technical University (2020)

  35. Shu, Z., Shen, X., Xin, S., Chang, Q., Feng, J., Kavan, L., Liu, L.: Scribble-based 3D shape segmentation via weakly-supervised learning. IEEE Trans. Vis. Comput. Gr. 26, 2671 (2020)

    Article  Google Scholar 

  36. Shu, Z., Yang, S., Wu, H., Xin, S., Pang, C., Kavan, L., Liu, L.: 3D shape segmentation using soft density peak clustering and semi-supervised learning. Comput. Aided Des. 145, 103181 (2022)

    Article  MathSciNet  Google Scholar 

  37. Sidi, O., Kleiman, Y., Cohen-Or, D., van Kaick, O., Zhang, H.: Unsupervised co-segmentation of a set of shapes via descriptor-space spectral clustering. ACM Trans. Gr. 30 (2011)

  38. Verdecchia, R., Cruz, L., Sallou, J., Lin, M., Wickenden, J., Hotellier, E.: Data-centric green ai an exploratory empirical study. In: 2022 International Conference on ICT for Sustainability (ICT4S), pp. 35–45 (2022)

  39. Wang, D., Cui, P., Zhu, W.: Structural deep network embedding. In: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD ’16, pp. 1225–1234, New York, NY, USA. Association for Computing Machinery (2016)

  40. Wang, Y., Asafi, S., Kaick, O. V., Zhang, H., Cohen-Or, D., Chen, B.: Active co-analysis of a set of shapes. vol. 31 (2012)

  41. Wu, Z., Wang, Y., Shou, R., Chen, B., Liu, X.: Unsupervised co-segmentation of 3D shapes via affinity aggregation spectral clustering. Comput. Gr. 37(6), 628–637 (2013)

Download references

Acknowledgements

This work was supported by TUBITAK under the project EEEAG-119E572.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yusuf Sahillioğlu.

Ethics declarations

Conflict of interest

The authors have no conflict of interest to declare that are relevant to the content of this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sivri, T.T., Sahillioğlu, Y. A data-centric unsupervised 3D mesh segmentation method. Vis Comput 40, 2237–2249 (2024). https://doi.org/10.1007/s00371-023-02913-y

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00371-023-02913-y

Keywords

Navigation