Skip to main content
Log in

InstantTrace: fast parallel neuron tracing on GPUs

  • Original article
  • Published:
The Visual Computer Aims and scope Submit manuscript

Abstract

Neuron tracing, also known as neuron reconstruction, is an essential step in investigating the morphology of neuronal circuits and mechanisms of the brain. Since the ultra-high throughput of optical microscopy (OM) imaging leads to images of multiple gigabytes or even terabytes, it takes tens of hours for the state-of-the-art methods to generate a neuron reconstruction from a whole mouse brain OM image. We introduce InstantTrace, a novel framework that utilizes parallel neuron tracing on GPUs, achieving a significant speed boost of more than 20\(\times \) compared to state-of-the-art methods with comparable reconstruction quality on the BigNeuron dataset. Our framework utilizes two methods to achieve this performance advance. Firstly, it takes advantage of the sparse feature and tree structure of the neuron image, which serial tracing methods cannot fully exploit. Secondly, all stages of the neuron tracing pipeline, including the initial reconstruction stage that have not been parallelized in the past, are executed on GPU using carefully designed parallel algorithms. Furthermore, to investigate the applicability and robustness of the InstantTrace framework, a test on a whole mouse brain OM Image is conducted, and a preliminary neuron reconstruction of the whole brain is finished within 1 h on a single GPU, an order of magnitude faster than the existing methods. Our framework has the potential to significantly improve the efficiency of the neuron tracing process, allowing neuron image experts to obtain a preliminary reconstruction result instantly before engaging in manual verification and refinement.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Notes

  1. https://github.com/jifaley/InstantTrace.

  2. The data is presented by Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology.

References

  1. Ai-Awami, A.K., Beyer, J., Haehn, D., Kasthuri, N., Lichtman, J.W., Pfister, H., Hadwiger, M.: Neuroblocks-visual tracking of segmentation and proofreading for large connectomics projects. IEEE Trans. Visual Comput. Graph. 22(1), 738–746 (2015)

    Article  Google Scholar 

  2. Bakunas-Milanowski, D., Rego, V., Sang, J., Yu, C.: Efficient algorithms for stream compaction on GPUs. Int. J. Netw. Comput. 7(2), 208–226 (2017)

    Google Scholar 

  3. Boorboor, S., Jadhav, S., Ananth, M., Talmage, D., Role, L., Kaufman, A.: Visualization of neuronal structures in wide-field microscopy brain images. IEEE Trans. Visual Comput. Graph. 25(1), 1018–1028 (2018)

    Article  Google Scholar 

  4. Brown, K.M., Barrionuevo, G., Canty, A.J., De Paola, V., Hirsch, J.A., Jefferis, G.S., Lu, J., Snippe, M., Sugihara, I., Ascoli, G.A.: The diadem data sets: representative light microscopy images of neuronal morphology to advance automation of digital reconstructions. Neuroinformatics 9, 143–157 (2011)

    Article  Google Scholar 

  5. Chen, H., Xiao, H., Liu, T., Peng, H.: Smarttracing: self-learning-based neuron reconstruction. Brain Inform. 2(3), 135–144 (2015)

    Article  Google Scholar 

  6. Chen, W., Liu, M., Du, H., Radojević, M., Wang, Y., Meijering, E.: Deep-learning-based automated neuron reconstruction from 3D microscopy images using synthetic training images. IEEE Trans. Med. Imaging 41(5), 1031–1042 (2021)

    Article  Google Scholar 

  7. Chen, X., Zhang, C., Zhao, J., Xiong, Z., Zha, Z.J., Wu, F.: Weakly supervised neuron reconstruction from optical microscopy images with morphological priors. IEEE Trans. Med. Imaging 40(11), 3205–3216 (2021)

    Article  Google Scholar 

  8. Ghahremani, P., Boorboor, S., Mirhosseini, P., Gudisagar, C., Ananth, M., Talmage, D., Role, L.W., Kaufman, A.E.: Neuroconstruct: 3D reconstruction and visualization of neurites in optical microscopy brain images. IEEE Trans. Vis. Comput. Graph. 28(12), 4951–4965 (2021)

    Article  Google Scholar 

  9. Haehn, D., Knowles-Barley, S., Roberts, M., Beyer, J., Kasthuri, N., Lichtman, J.W., Pfister, H.: Design and evaluation of interactive proofreading tools for connectomics. IEEE Trans. Visual Comput. Graph. 20(12), 2466–2475 (2014)

    Article  Google Scholar 

  10. Halavi, M., Hamilton, K.A., Parekh, R., Ascoli, G.: Digital reconstructions of neuronal morphology: three decades of research trends. Front. Neurosci. 6, 49 (2012)

    Article  Google Scholar 

  11. Jones, S.: Introduction to dynamic parallelism. In: GPU Technology Conference Presentation S, vol. 338, p. 2012 (2012)

  12. Li, Q., Shen, L.: 3D neuron reconstruction in tangled neuronal image with deep networks. IEEE Trans. Med. Imaging 39(2), 425–435 (2019)

    Article  Google Scholar 

  13. Liu, M., Chen, W., Wang, C., Peng, H.: A multiscale ray-shooting model for termination detection of tree-like structures in biomedical images. IEEE Trans. Med. Imaging 38(8), 1923–1934 (2019)

    Article  Google Scholar 

  14. Liu, S., Zhang, D., Liu, S., Feng, D., Peng, H., Cai, W.: Rivulet: 3D neuron morphology tracing with iterative back-tracking. Neuroinformatics 14(4), 387–401 (2016)

    Article  Google Scholar 

  15. Liu, S., Zhang, D., Song, Y., Peng, H., Cai, W.: Automated 3-D neuron tracing with precise branch erasing and confidence controlled back tracking. IEEE Trans. Med. Imaging 37(11), 2441–2452 (2018)

    Article  Google Scholar 

  16. McDonald, T., Usher, W., Morrical, N., Gyulassy, A., Petruzza, S., Federer, F., Angelucci, A., Pascucci, V.: Improving the usability of virtual reality neuron tracing with topological elements. IEEE Trans. Visual. Comput. Graph. 27(2), 744–754 (2020)

    Article  Google Scholar 

  17. Peng, H., Hawrylycz, M., Roskams, J., Hill, S., Spruston, N., Meijering, E., Ascoli, G.A.: Bigneuron: large-scale 3D neuron reconstruction from optical microscopy images. Neuron 87(2), 252–256 (2015)

    Article  Google Scholar 

  18. Peng, H., Long, F., Myers, G.: Automatic 3D neuron tracing using all-path pruning. Bioinformatics 27(13), i239–i247 (2011)

    Article  Google Scholar 

  19. Peng, H., Ruan, Z., Long, F., Simpson, J.H., Myers, E.W.: V3D enables real-time 3D visualization and quantitative analysis of large-scale biological image data sets. Nat. Biotechnol. 28(4), 348–353 (2010)

  20. Peng, H., Zhou, Z., Meijering, E., Zhao, T., Ascoli, G.A., Hawrylycz, M.: Automatic tracing of ultra-volumes of neuronal images. Nat. Methods 14(4), 332–333 (2017)

    Article  Google Scholar 

  21. Quan, T., Zhou, H., Li, J., Li, S., Li, A., Li, Y., Lv, X., Luo, Q., Gong, H., Zeng, S.: Neurogps-tree: automatic reconstruction of large-scale neuronal populations with dense neurites. Nat. Methods 13(1), 51–54 (2016)

    Article  Google Scholar 

  22. Svoboda, K.: The past, present, and future of single neuron reconstruction. Neuroinformatics 9(2), 97–98 (2011)

    Article  Google Scholar 

  23. Tan, Y., Liu, M., Chen, W., Wang, X., Peng, H., Wang, Y.: Deepbranch: deep neural networks for branch point detection in biomedical images. IEEE Trans. Med. Imaging 39(4), 1195–1205 (2019)

    Article  Google Scholar 

  24. Usher, W., Klacansky, P., Federer, F., Bremer, P.T., Knoll, A., Yarch, J., Angelucci, A., Pascucci, V.: A virtual reality visualization tool for neuron tracing. IEEE Trans. Visual. Comput. Graph. 24(1), 994–1003 (2017)

    Article  Google Scholar 

  25. Wang, S., Wu, J., Wei, M., Ma, X.: Robust curve skeleton extraction for vascular structures. Graph. Models 74(4), 109–120 (2012)

    Article  Google Scholar 

  26. Wang, Y., Li, Q., Liu, L., Zhou, Z., Ruan, Z., Kong, L., Li, Y., Wang, Y., Zhong, N., Chai, R., et al.: TeraVR empowers precise reconstruction of complete 3-D neuronal morphology in the whole brain. Nat. Commun. 10(1), 1–9 (2019)

    Google Scholar 

  27. Wei, L.Y.: Parallel poisson disk sampling. ACM Trans. Graph. (tog) 27(3), 1–9 (2008)

    Google Scholar 

  28. Xiao, H., Peng, H.: App2: automatic tracing of 3D neuron morphology based on hierarchical pruning of a gray-weighted image distance-tree. Bioinformatics 29(11), 1448–1454 (2013)

    Article  Google Scholar 

  29. Yang, B., Liu, M., Wang, Y., Zhang, K., Meijering, E.: Structure-guided segmentation for 3D neuron reconstruction. IEEE Trans. Med. Imaging 41(4), 903–914 (2021)

    Article  Google Scholar 

  30. Yang, J., Hao, M., Liu, X., Wan, Z., Zhong, N., Peng, H.: FMST: an automatic neuron tracing method based on fast marching and minimum spanning tree. Neuroinformatics 17(2), 185–196 (2019)

    Article  Google Scholar 

  31. Zhao, J., Chen, X., Xiong, Z., Liu, D., Zeng, J., Xie, C., Zhang, Y., Zha, Z.J., Bi, G., Wu, F.: Neuronal population reconstruction from ultra-scale optical microscopy images via progressive learning. IEEE Trans. Med. Imaging 39(12), 4034–4046 (2020)

    Article  Google Scholar 

  32. Zhou, Z., Liu, X., Long, B., Peng, H.: TReMAP: automatic 3D neuron reconstruction based on tracing, reverse mapping and assembling of 2D projections. Neuroinformatics 14(1), 41–50 (2016)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhong Ren.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hou, Y., Ren, Z., Hou, Q. et al. InstantTrace: fast parallel neuron tracing on GPUs. Vis Comput 39, 3783–3796 (2023). https://doi.org/10.1007/s00371-023-02969-w

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00371-023-02969-w

Keywords

Navigation