Skip to main content
Log in

Context pixel-based reversible data hiding scheme using pixel value ordering

  • Original article
  • Published:
The Visual Computer Aims and scope Submit manuscript

Abstract

Pixel value ordering (PVO) and prediction error expansion (PEE) techniques are now being combined for improved performance in the domain of reversible data hiding (RDH). Conventional PVO can only embed two data bits in a smooth picture block in a row or column, which is insufficient to meet the contemporary demands of much payload in RDH. There is a lot of room to enhance the bit stuffing by inserting more than two data bits in a smooth block while maintaining acceptable visual image quality and data security. In this study, we suggest a context pixel-based data concealing strategy based on PVO combined with PEE, in which each block can insert two or more data bits. This proposed approach has three distinct features: smooth block selection, minimum and maximum position selection, and pixel difference with median value for data embedding. Furthermore, more than two pixels can be used to embed the secret data bit. The block is recommended by the selection of the neighbouring and present block’s pixel. The use of context pixels in context pixel-based PVO (CPPVO) improves both embedding efficiency and picture quality. When the block size is \(Z=(3\times 3)\), the average embedding capacity (EC) of our novel approach is over 70,000 bits, and the average PSNR is over 40 dB. The results of the experiments reveal that our technique is more dependable than other state-of-the-art systems in terms of security, picture quality, and secret volume.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Algorithm 1
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Algorithm 2
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

Data Availability

The data that support the findings of this study are available from the authors upon reasonable request.

References

  1. Alattar, A.M.: Reversible watermark using the difference expansion of a generalized integer transform. IEEE Trans. Image Process. 13(8), 1147–1156 (2004)

    MathSciNet  Google Scholar 

  2. Benseddik, M. L., Zebbiche, K., Azzaz, M. S., Sadoudi, S.: Interpolation-based reversible data hiding in the transform domain for fingerprint images. Multimed. Tools Appl. 1–28 (2022)

  3. Caciula, I., Coanda, H.G., Coltuc, D.: Multiple moduli prediction error expansion reversible data hiding. Signal Process. Image Commun. 71, 120–127 (2019)

    Google Scholar 

  4. Celik, M.U., Sharma, G., Tekalp, A.M., Saber, E.: Lossless generalized-LSB data embedding. IEEE Trans. Image Process. 14(2), 253–266 (2005)

    Google Scholar 

  5. Chang, C.C., Nguyen, T.S., Lin, C.C.: A reversible compression code hiding using SOC and SMVQ indices. Inf. Sci. 300, 85–99 (2015)

    Google Scholar 

  6. Chang, J., Ding, F., Li, X., Zhu, G.: Hybrid prediction-based pixel-value-ordering method for reversible data hiding. J. Vis. Commun. Image Represent. 77, 103097 (2021)

    Google Scholar 

  7. Di, F., Zhang, M., Liao, X., Liu, J.: High-fidelity reversible data hiding by Quadtree-based pixel value ordering. Multimed. Tools Appl. 78(6), 7125–7141 (2019)

    Google Scholar 

  8. Fridrich, J., Goljan, M., Du, R.: Reliable detection of LSB steganography in color and grayscale images. In: Proceedings of the 2001 workshop on Multimedia and security: new challenges, pp. 27–30 (2001, October)

  9. Fridrich, J., Goljan, M., Du, R.: Lossless data embedding-new paradigm in digital watermarking. EURASIP J. Adv. Signal Process. 2002(2), 1–12 (2002)

    Google Scholar 

  10. Hong, W., Chen, T.S.: Reversible data embedding for high quality images using interpolation and reference pixel distribution mechanism. J. Vis. Commun. Image Represent. 22(2), 131–140 (2011)

    Google Scholar 

  11. Hu, Y., Lee, H.K., Chen, K., Li, J.: Difference expansion based reversible data hiding using two embedding directions. IEEE Trans. Multimed. 10(8), 1500–1512 (2008)

    Google Scholar 

  12. Kaur, G., Agarwal, R., Patidar, V.: Crypto-watermarking of images for secure transmission over cloud. J. Inf. Optim. Sci. 41(1), 205–216 (2020)

    Google Scholar 

  13. Kaur, G., Agarwal, R., Patidar, V.: Color image encryption scheme based on fractional Hartley transform and chaotic substitution-permutation. Vis. Comput. 38(3), 1027–1050 (2022)

    Google Scholar 

  14. Kim, H.J., Sachnev, V., Shi, Y.Q., Nam, J., Choo, H.G.: A novel difference expansion transform for reversible data embedding. IEEE Trans. Inf. Forensics Secur. 3(3), 456–465 (2008)

    Google Scholar 

  15. Kodak Lossless True Color Image Suite, http://r0k.us/graphics/kodak/. Accessed 11 Dec 2017

  16. Li, X., Yang, B., Zeng, T.: Efficient reversible watermarking based on adaptive prediction-error expansion and pixel selection. IEEE Trans. Image Process. 20(12), 3524–3533 (2011)

    MathSciNet  Google Scholar 

  17. Li, X., Li, J., Li, B., Yang, B.: High-fidelity reversible data hiding scheme based on pixel-value-ordering and prediction-error expansion. Signal Process. 93(1), 198–205 (2013)

    Google Scholar 

  18. Li, X., Li, B., Yang, B., Zeng, T.: General framework to histogram-shifting-based reversible data hiding. IEEE Trans. Image Process. 22(6), 2181–2191 (2013)

    MathSciNet  Google Scholar 

  19. Li, S., Hu, L., Sun, C., Chi, L., Li, T., Li, H.: A reversible data hiding algorithm based on prediction error with large amounts of data hiding in spatial domain. IEEE Access 8, 214732–214741 (2020)

    Google Scholar 

  20. Luo, L., Chen, Z., Chen, M., Zeng, X., Xiong, Z.: Reversible image watermarking using interpolation technique. IEEE Trans. Inf. Forensics Secur. 5(1), 187–193 (2009)

    Google Scholar 

  21. Meikap, S., Jana, B.: Extended directional IPVO for reversible data hiding scheme. In: Communication, devices, and computing (pp. 47-58). Springer, Singapore (2017)

  22. Meikap, S., Jana, B.: Directional PVO for reversible data hiding scheme with image interpolation. Multimed. Tools Appl. 77(23), 31281–31311 (2018)

    Google Scholar 

  23. Meikap, S., Jana, B.: Directional pixel value ordering based secret sharing using sub-sampled image exploiting Lagrange polynomial. SN Appl. Sci. 1(6), 645 (2019)

    Google Scholar 

  24. Meikap, S., Jana, B.: Improved center-folding based directional pixel value ordering for reversible data hiding scheme. Multimed. Tools Appl. 80(4), 5617–5652 (2021)

    Google Scholar 

  25. Ni, Z., Shi, Y.Q., Ansari, N., Su, W.: Reversible data hiding. IEEE Trans. Circuits Syst. Video Technol. 16(3), 354–362 (2006)

    Google Scholar 

  26. Nikolaidis, N., Pitas, I.: Robust image watermarking in the spatial domain. Signal Process. 66(3), 385–403 (1998)

    Google Scholar 

  27. Nottingham Trent University, UCID Image Database. http://jasoncantarella.com/downloads/ucid.v2.tar.gz. Accessed 6 Nov 2019

  28. Ou, B., Li, X., Zhao, Y., Ni, R., Shi, Y.Q.: Pairwise prediction-error expansion for efficient reversible data hiding. IEEE Trans. Image Process. 22(12), 5010–5021 (2013)

    MathSciNet  Google Scholar 

  29. Ou, B., Li, X., Zhao, Y., Ni, R.: Reversible data hiding using invariant pixel-value-ordering and prediction-error expansion. Signal Process. Image Commun. 29(7), 760–772 (2014)

    Google Scholar 

  30. Pan, Z., Hu, S., Ma, X., Wang, L.: Reversible data hiding based on local histogram shifting with multilayer embedding. J. Vis. Commun. Image Represent. 31, 64–74 (2015)

    Google Scholar 

  31. Peng, F., Li, X., Yang, B.: Improved PVO-based reversible data hiding. Digit. Signal Process. 25, 255–265 (2014)

    Google Scholar 

  32. Qu, X., Kim, H.J.: Pixel-based pixel value ordering predictor for high-fidelity reversible data hiding. Signal Process. 111, 249–260 (2015)

    Google Scholar 

  33. RoselinKiruba, R., Sharmila, T. S.: A novel data hiding by image interpolation using edge quad-tree block complexity. Vis. Comput. 1–14 (2021)

  34. Singh, L., Singh, A.K., Singh, P.K.: Secure data hiding techniques: a survey. Multimed. Tools Appl. 79, 15901–15921 (2020)

    Google Scholar 

  35. Su, Q., Chen, B.: Robust color image watermarking technique in the spatial domain. Soft. Comput. 22(1), 91–106 (2018)

    Google Scholar 

  36. Sudipta, M., Biswapati, J., Prasenjit, B., Kumar, S. P.: High payload RDH through directional PVO exploiting center-folding strategy. In: Proceedings of International Conference on Frontiers in Computing and Systems. Springer, Singapore, pp. 659–670 (2021)

  37. The National Library of Medicine presents MedPix®, https://openi.nlm.nih.gov/gridquery.php?q= &it=x. Accessed 11 Dec 2017

  38. Thodi, D.M., Rodríguez, J.J.: Expansion embedding techniques for reversible watermarking. IEEE Trans. Image Process. 16(3), 721–730 (2007)

    MathSciNet  Google Scholar 

  39. Tian, J.: Reversible data embedding using a difference expansion. IEEE Trans. Circuits Syst. Video Technol. 13(8), 890–896 (2003)

    Google Scholar 

  40. Tsai, P., Hu, Y.C., Yeh, H.L.: Reversible image hiding scheme using predictive coding and histogram shifting. Signal Process. 89(6), 1129–1143 (2009)

    Google Scholar 

  41. Tu, S.C., Tai, W.K., Isenburg, M., et al.: An improved data hiding approach for polygon meshes. Vis. Comput. 26, 1177–1181 (2010). https://doi.org/10.1007/s00371-009-0398-1

    Article  Google Scholar 

  42. University of California, Berkeley, The Berkeley Segmentation Dataset and Benchmark, http://www.eecs.berkeley.edu/Research/Projects/CS/vision/grouping/BSR/BSR_bsds500.tgz. Accessed 11 Dec 2017

  43. University of Southern California, The USC-SIPI Image Database, http://sipi.usc.edu/database/database.php?volume=misc. Accessed 11 Dec 2017

  44. Verma, V.S., Jha, R.K., Ojha, A.: Significant region based robust watermarking scheme in lifting wavelet transform domain. Expert Syst. Appl. 42(21), 8184–8197 (2015)

    Google Scholar 

  45. Wang, X.T., Chang, C.C., Nguyen, T.S., Li, M.C.: Reversible data hiding for high quality images exploiting interpolation and direction order mechanism. Digit. Signal Process. 23(2), 569–577 (2013)

    MathSciNet  Google Scholar 

  46. Wang, J., Ni, J., Zhang, X., Shi, Y.Q.: Rate and distortion optimization for reversible data hiding using multiple histogram shifting. IEEE Trans. Cybern. 47(2), 315–326 (2016)

    Google Scholar 

  47. Wang, X.Y., Zhang, S.Y., Wen, T.T., Yang, H.Y., Niu, P.P.: Coefficient difference based watermark detector in nonsubsampled contourlet transform domain. Inf. Sci. 503, 274–290 (2019)

    MathSciNet  Google Scholar 

  48. Wu, H., Li, X., Zhao, Y., Ni, R.: Improved PPVO-based high-fidelity reversible data hiding. Signal Process. 167, 107264 (2020)

    Google Scholar 

  49. Yao, H., Mao, F., Qin, C., Tang, Z.: Dual-JPEG-image reversible data hiding. Inf. Sci. 563, 130–149 (2021)

    MathSciNet  Google Scholar 

  50. Yu, C., Zhang, X., Zhang, X., Li, G., Tang, Z.: Reversible data hiding with hierarchical embedding for encrypted images. IEEE Trans. Circuits Syst. Video Technol. 32(2), 451–466 (2021)

    Google Scholar 

  51. Yu, C., Zhang, X., Wang, D., Tang, Z.: Reversible data hiding with pairwise PEE and 2D-PEH decomposition. Signal Process. 196, 108527 (2022)

    Google Scholar 

  52. Yu, C., Zhang, X., Li, G., Zhan, S., Tang, Z.: Reversible data hiding with adaptive difference recovery for encrypted images. Inf. Sci. 584, 89–110 (2022)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sudipta Meikap.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Meikap, S., Jana, B. & Lu, TC. Context pixel-based reversible data hiding scheme using pixel value ordering. Vis Comput 40, 3529–3552 (2024). https://doi.org/10.1007/s00371-023-03050-2

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00371-023-03050-2

Keywords

Navigation