Skip to main content

Advertisement

Log in

A simple and reliable approach to providing a visually lossless image compression

  • Original article
  • Published:
The Visual Computer Aims and scope Submit manuscript

Abstract

This paper presents an approach for providing the desired visually lossless quality of Joint Photographic Experts Group (JPEG) and Versatile Video Coding (VVC) compressed images. The desired quality is defined as the peak signal-to-noise ratio (PSNR) of the first just noticeable difference (JND) point, which represents the boundary between visually lossless and visually lossy image compression. The proposed approach is based on a piecewise linear interpolation of the PSNR as a function of the parameter that controls the degree of compression—the quality factor (QF) or the quantization parameter (QP). The desired quality is obtained by determining the PSNR value for only two or three values of the QF or QP. The accuracy of the proposed approach was investigated on three publicly available image databases with available results of subjective JND tests on nearly 300 high-resolution images. It has been shown that the maximum difference between the desired and provided quality of JPEG compressed images is 0.3 dB, while the maximum difference in images with VVC compression is slightly larger and is approximately 0.5 dB.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data availability

The databases analyzed during the current study are available in the USC Media Communications Lab (http://mcl.usc.edu/mcl-jci-dataset/), contacting the owners of the JND-Pano database (wangxu@szu.edu.cn) and Shen Xuelin personal page (https://shenxuelin-cityu.github.io/jnd.html).

Code availability

Contact the corresponding author if necessary.

References

  1. Bull, D.R., Zhang, F.: Intelligent Image and Video Compression: Communicating Pictures, 2nd edn. Academic Press, Elsevier Ltd (2021)

    Google Scholar 

  2. Ince, I.F., Bulut, F., Kilic, I., Yildirim, M.E., Ince, O.F.: Low dynamic range discrete cosine transform (LDR-DCT) for high-performance JPEG image compression. Vis. Comput. 38, 1845–1870 (2022). https://doi.org/10.1007/s00371-022-02418-0

    Article  Google Scholar 

  3. Hossain, K., Mantel, C., Forchhammer, S.O.: No-reference prediction of quality metrics for H.264-compressed infrared sequences for unmanned aerial vehicle applications. J. Electr. Imaging 28(4), 043012-1–14 (2019). https://doi.org/10.1117/1.JEI.28.4.043012

    Article  Google Scholar 

  4. Krivenko, S., Krylova, O., Bataeva, E., Lukin, V.: Smart lossy compression of images based on distortion prediction. Telecommun. Radio Eng. 77(17), 1535–1554 (2018). https://doi.org/10.1615/TelecomRadEng.v77.i17.40

    Article  Google Scholar 

  5. Saha, S., Vemuri, R.: An analysis on the effect of image features on lossy coding performance. IEEE Signal Process. Lett. 7(5), 104–107 (2000). https://doi.org/10.1109/97.841153

    Article  Google Scholar 

  6. Krylova, O., Kryvenko, L., Krivenko, S., Lukin, V.: A fast noniterative visually lossless compression of dental images using AGU-M coder. In: Proceedings of the 16th IEEE International Conference on the Experience of Designing and Application of CAD Systems (CADSM), pp. 6–10 (2021). https://doi.org/10.1109/CADSM52681.2021.9385257

  7. Li, F., Krivenko, S.S., Lukin, V.V.: Analysis of two-step approach for compressing texture images with desired quality. Aerosp. Tech. Technol. 1(161), 50–58 (2020). https://doi.org/10.32620/aktt.2020.1.08

    Article  Google Scholar 

  8. Zemliachenko, A., Ponomarenko, N., Lukin, V., Egiazarian, K., Astola, J.: Still image/video frame lossy compression providing a desired visual quality. Multidimension. Syst. Signal Process. 27(3), 697–718 (2016). https://doi.org/10.1007/s11045-015-0333-8

    Article  Google Scholar 

  9. Li, F., Krivenko, S., Lukin, V.: A two-step procedure for image lossy compression by ADCTC with a desired quality. In: Proceedings of the 11th IEEE International Conference on Dependable Systems, Services and Technologies (DESSERT), pp. 307–312 (2020). https://doi.org/10.1109/DESSERT50317.2020.9125000

  10. Flynn, J.R., Ward, S., Abich, J., Poole, D.: Image quality assessment using the SSIM and the just noticeable difference paradigm. In: Harris, D. (ed) Engineering Psychology and Cognitive Ergonomics, Understanding Human Cognition. Springer, Berlin, Heidelberg, pp. 23–30 (2013). https://doi.org/10.1007/978-3-642-39360-0_3

  11. Cai, Y.-Q., Zou, H.-X., Yuan, F.: Adaptive compression method for underwater images based on perceived quality estimation. Front. Inf. Technol. Electr. Eng. 20(5), 716–730 (2019). https://doi.org/10.1631/FITEE.1700737

    Article  Google Scholar 

  12. Poth, M., Trpovski, Ž, Lončar-Turukalo, T.: Analysis and improvement of JPEG compression performance using custom quantization and block boundary classifications. Acta Polytech. Hungarica 17(6), 171–191 (2020). https://doi.org/10.12700/APH.17.6.2020.6.10

    Article  Google Scholar 

  13. Li, F., Lukin, V., Okarma, K., Fu, Y.: Providing a desired quality of BPG compressed images for FSIM metric. In: Proceedings of the 3rd IEEE International Conference on Advanced Trends in Information Theory (ATIT), pp. 10–14 (2021). https://doi.org/10.1109/ATIT54053.2021.9678522

  14. Li, F., Lukin, V., Ieremeiev, O., Okarma, K.: Quality control for the BPG lossy compression of three-channel remote sensing images. Remote Sensing 14(1824), 1–27 (2022). https://doi.org/10.3390/rs14081824

    Article  Google Scholar 

  15. Fiorucci, F., Baruffa, G., Frescura, F.: Objective and subjective quality assessment between JPEG XR with overlap and JPEG 2000. J. Vis. Commun. Image Represent. 23(6), 835–844 (2012). https://doi.org/10.1016/j.jvcir.2012.04.011

    Article  Google Scholar 

  16. Bondžulić, B., Stojanović, N., Petrović, V., Pavlović, B., Miličević, Z.: Efficient prediction of the first just noticeable difference point for JPEG compressed images. Acta Polytech. Hung. 18(8), 201–220 (2021). https://doi.org/10.12700/APH.18.8.2021.8.11

    Article  Google Scholar 

  17. Bondžulić, B., Pavlović, B., Stojanović, N., Petrović, V.: Picture-wise just noticeable difference prediction model for JPEG image quality assessment. Vojnotehnički glasnik/Military Technical Courier 70(1), 62–86 (2022). https://doi.org/10.5937/vojtehg70-34739

    Article  Google Scholar 

  18. Stojanović, N., Bondžulić, B., Pavlović, B., Petrović, V., Zelmati, O.: Just noticeable difference prediction and image quality assessment. In: Proceedings of the IEEE Zooming Innovation in Consumer Technologies International Conference (ZINC), pp. 234–238 (2022). https://doi.org/10.1109/ZINC55034.2022.9840625

  19. Fan, C., Lin, H., Hosu, V., Zhang, Y., Jiang, Q., Hamzaoui, R., Saupe, D.: SUR-Net: Predicting the satisfied user ratio curve for image compression with deep learning. In: Proceedings of the 11th International Conference on Quality of Multimedia Experience (QoMEX), pp. 1–6 (2019). https://doi.org/10.1109/QoMEX.2019.8743204

  20. Lin, H., Hosu, V., Fan, C., Zhang, Y., Mu, Y., Hamzaoui, R., Saupe, D.: SUR-FeatNet: Predicting the satisfied user ratio curve for image compression with deep feature learning. Qual. User Exp. 5(5), 1–23 (2020). https://doi.org/10.1007/s41233-020-00034-1

    Article  Google Scholar 

  21. Liu, H., Zhang, Y., Zhang, H., Fan, C., Kwong, S., Kuo, C.-C.J., Fan, X.: Deep learning based picture-wise just noticeable prediction model for image compression. IEEE Trans. Image Process. 29, 641–656 (2020). https://doi.org/10.1109/TIP.2019.2933743

    Article  MathSciNet  Google Scholar 

  22. Krivenko, S., Demchenko, D., Dyogtev, I., Lukin, V.: A two-step approach to providing a desired quality of lossy compressed images. In: Nechyporuk, M., Pavlikov, V., Kritskiy, D. (eds) Integrated Computer Technologies in Mechanical Engineering, Advances in Intelligent Systems and Computing. Springer, Cham, pp. 482–491 (2020). https://doi.org/10.1007/978-3-030-37618-5_41

  23. Li, F., Krivenko, S., Lukin, V.: Adaptive two-step procedure of providing desired visual quality of compressed image. In: Proceedings of the 4th International Conference on Electronic Information Technology and Computer Engineering (EITCE), pp. 407–414 (2020). https://doi.org/10.1145/3443467.3443791

  24. Li, F., Lukin, V., Okarma, K., Fu, Y., Duan, J.: Intelligent lossy compression method of providing a desired visual quality for images of different complexity. In: Proceedings of the Applied Mathematics, Modeling and Computer Simulation (AMMCS), pp. 500–505 (2021). https://doi.org/10.3233/ATDE220050

  25. Minguillon, J., Pujol, J.: JPEG standard uniform quantization error modelling with applications to sequential and progressive operation modes. J. Electron. Imaging 10(2), 475–485 (2001). https://doi.org/10.1117/1.1344592

    Article  Google Scholar 

  26. Krivenko, S., Zriakhov, M., Kussul, N., Lukin, V.: Prediction of visual quality for lossy compressed images. In: Proceedings of the 15th International Conference on the Experience of Designing and Application of CAD Systems (CADSM), pp. 1–5 (2019). https://doi.org/10.1109/CADSM.2019.8779266

  27. Lukin, V., Vasilyeva, I., Krivenko, S., Li, F., Abramov, S., Rubel, O., Vozel, B., Chehdi, K., Egiazarian, K.: Lossy compression of multichannel remote sensing images with quality control. Remote Sens. 12(3840), 1–35 (2020). https://doi.org/10.3390/rs12223840

    Article  Google Scholar 

  28. Kozhemiakin, R., Abramov, S., Lukin, V., Djurović, B., Djurović, I., Simeunović, M.: Strategies of SAR image lossy compression by JPEG2000 and SPIHT. In: Proceedings of the 6th Mediterranean Conference on Embedded Computing (MECO), pp. 1–6 (2017). https://doi.org/10.1109/MECO.2017.7977176

  29. Lukin, V., Zriakhov, M., Ponomarenko, N., Krivenko, S., Zhenjiang, M.: Lossy compression of images without visible distortions and its application. In: Proceedings of the 10th International Conference on Signal Processing, pp. 698–701 (2010). https://doi.org/10.1109/ICOSP.2010.5655751

  30. Kozhemiakin, R., Lukin, V., Vozel, B.: Image quality prediction for DCT-based compression. In: Proceedings of the 14th International Conference The Experience of Designing, and Application of CAD Systems in Microelectronics (CADSM), pp. 225–228 (2017). https://doi.org/10.1109/CADSM.2017.7916121

  31. Tichonov, J., Kurasova, O., Filatovas, E.: Image classification for JPEG compression. Adv. Sci. Technol. Res. J. 12(2), 29–34 (2018). https://doi.org/10.12913/22998624/87041

    Article  Google Scholar 

  32. Zemliachenko, A.N., Vozel, B., Lukin, V.V., Zelensky, A.A.: Prediction of compression ratio for ADCT coder. Radioelectr. Comput. Syst. 2016(6), 204–209 (2016)

    Google Scholar 

  33. Krivenko, S., Li, F., Lukin, V., Vozel, B., Krylova, O.: Prediction of visual quality metrics in lossy image compression. In: Proceedings of the 40th IEEE International Conference on Electronics and Nanotechnology (ELNANO), pp. 478–483 (2020). https://doi.org/10.1109/ELNANO50318.2020.9088819

  34. Kim, K.-J., Kim, B., Lee, K.-H., Mantiuk, R., Richter, T., Kang, H.-S.: Use of image features in predicting visually lossless thresholds of JPEG2000 compressed body CT images: initial trial. Radiology 268(3), 710–718 (2013). https://doi.org/10.1148/radiol.13122015

    Article  Google Scholar 

  35. Li, F., Krivenko, S., Lukin, V.: Two-step providing of desired quality in lossy image compression by SPIHT. Radioelectr. Comput. Syst. 2(94), 22–32 (2020). https://doi.org/10.32620/reks.2020.2.02

    Article  Google Scholar 

  36. Li, F., Krivenko, S., Lukin, V.: An approach to better portable graphics (BPG) compression with providing a desired quality. In: Proceedings of the 2nd IEEE International Conference on Advanced Trends in Information Theory (ATIT), pp. 13–17 (2020). https://doi.org/10.1109/ATIT50783.2020.9349289

  37. Jin, J., Yu, D., Lin, W., Meng, L., Wang, H., Zhang, H.: Full RGB just noticeable difference (JND) modelling. arXiv 2203.00629, 1–13 (2022). https://arxiv.org/abs/2203.00629

  38. Bross, B., Wang, Y.-K., Ye, Y., Liu, S., Chen, J., Sullivan, G.J., Ohm, J.-R.: Overview of the versatile video coding (VVC) standard and its applications. IEEE Trans. Circuits Syst. Video Technol. 31(10), 3736–3764 (2021). https://doi.org/10.1109/TCSVT.2021.3101953

    Article  Google Scholar 

  39. Jin, L., Lin, J.Y., Hu, S., Wang, H., Wang, P., Katsavounidis, I., Aaron, A., Kuo, C.-C. J.: Statistical study on perceived JPEG image quality via MCL-JCI dataset construction and analysis. In: Proceedings of the IS&T International Symposium Electronic Imaging: Image Quality and System Performance XIII, IQSP-222, pp. 1–9 (2016). https://doi.org/10.2352/ISSN.2470-1173.2016.13.IQSP-222

  40. Liu, X., Chen, Y., Wang, X., Jiang, J., Kwong, S.: JND-Pano: Database for just noticeable difference of JPEG compressed panoramic images. In: Proceedings of the 19th Pacific-Rim Conference on Multimedia, pp. 458–468 (2018). https://doi.org/10.1007/978-3-030-00776-8_42

  41. Shen, X., Ni, Z., Yang, W., Zhang, X., Wang, S., Kwong, S.: A JND dataset based on VVC compressed images. In: Proceedings of the IEEE International Conference on Multimedia and Expo Workshops (ICMEW), pp. 1–6 (2020). https://doi.org/10.1109/ICMEW46912.2020.9105955

  42. Winkler, S.: Analysis of public image and video databases for quality assessment. IEEE J. Sel. Top. Signal Process. 6(6), 616–625 (2012). https://doi.org/10.1109/JSTSP.2012.2215007

    Article  Google Scholar 

  43. Gonzalez, R.C., Woods, R.E.: Digital Image Processing, 4th edn. Pearson Education, London (2018)

    Google Scholar 

  44. Yu, H., Winkler, S.: Image complexity and spatial information. In: Proceedings of the 5th International Workshop on Quality of Multimedia Experience (QoMEX), pp. 12–17 (2013). https://doi.org/10.1109/QoMEX.2013.6603194

  45. Ji, J., Xiang, K., Wang, X.: SCVS: blind image quality assessment based on spatial correlation and visual saliency. Vis. Comput. 39, 443–458 (2023). https://doi.org/10.1007/s00371-021-02340-x

    Article  Google Scholar 

Download references

Funding

Not applicable.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Boban Bondžulić.

Ethics declarations

Conflict of interest

All authors declare that we have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bondžulić, B., Pavlović, B., Stojanović, N. et al. A simple and reliable approach to providing a visually lossless image compression. Vis Comput 40, 3747–3763 (2024). https://doi.org/10.1007/s00371-023-03062-y

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00371-023-03062-y

Keywords

Navigation