Skip to main content
Log in

A powerful method for interactive content-based image retrieval by variable compressed convolutional info neural networks

  • Original article
  • Published:
The Visual Computer Aims and scope Submit manuscript

Abstract

There is a need for efficient methods to retrieve and obtain the visual data that a client need. New methods for content-based image retrieval (CBIR) have emerged due to recent developments in deep neural networks. However, there are still issues with deep neural networks in interactive CBIR systems like the search goal needs to be preset, scrambling and the computational cost is too high for an online environment. By this concern, this manuscript proposes an effective interactive CBIR that accurately retrieves images in response to the image query using variable compressed convolutional info neural networks (VCCINN). The weight of neural network is optimized by the variable info algorithm, and the matching activity is done by recursive density matching. The interactive technique eliminates irrelevant images based on user feedback and only the relevant images are finally retrieved. The overall retrieval performance in caltech-101 (dataset 1) and inria holiday (dataset 2) are 98.17% and 99% respectively. The performance of introduced model is proven by conducting ablation experiment on each component. The differential learning-based introduced image retrieval approach outperforms several existing methods regarding image similarity and retrieval speed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

Data availability

Data sharing not applicable to this article as no datasets were generated or analysed during the current study.

References

  1. Chhabra, P., Garg, N.K., Kumar, M.: Content-based image retrieval system using ORB and SIFT features. Neural. Comput. Appl. 32(7), 2725–2733 (2020)

    Google Scholar 

  2. Sathiamoorthy, S., Natarajan, M.: An efficient content-based image retrieval using enhanced multi-trend structure descriptor. SN Appl. Sci. 2(2), 1–20 (2020)

    Google Scholar 

  3. Pradhan, J., Ajad, A., Pal, A.K., Banka, H.: Multi-level colored directional motif histograms for content-based image retrieval.Visual Comput. 36(9), 1847-1868 (2020).

  4. Mistry, Y., Ingole, D.T., Ingole, M.D.: Content based image retrieval using hybrid features and various distance metric. J. Electr. Syst. Inf. Technol. 5(3), 874–888 (2018)

    Google Scholar 

  5. Chavda, S., Goyani, M.: Hybrid approach to content-based image retrieval using modified multi-scale LBP and color features. SN Comput. Sci. 1(6), 1–5 (2020)

    Google Scholar 

  6. Joseph, A., Rex, E.S., Christopher, S., Jose, J.: Content-based image retrieval using hybrid k-means moth flame optimization algorithm. Arab. J. Geosci. 14(8), 1–4 (2021)

    Google Scholar 

  7. Khan, A., Javed, A., Mahmood, M.T., Khan, M.H., Lee, I.H.: Directional magnitude local hexadecimal patterns: a novel texture feature descriptor for content-based image retrieval. IEEE Access 9, 135608–135629 (2021)

    Google Scholar 

  8. Alshehri, M.: A content-based image retrieval method using neural network-based prediction technique. Arab. J. Sci. Eng. 45(4), 2957–2973 (2020)

    Google Scholar 

  9. Raghuwanshi, G., Tyagi, V.: Feed-forward content-based image retrieval using adaptive tetrolettransforms. Multimed. Tools Appl. 77(18), 23389–23410 (2018)

    Google Scholar 

  10. Sezavar, A., Farsi, H., Mohamadzadeh, S.: Content-based image retrieval by combining convolutional neural networks and sparse representation. Multimed. Tools Appl. 78(15), 20895–20912 (2019)

    Google Scholar 

  11. Kumar, R.B., Marikkannu, P.: An efficient content-based image retrieval using an optimized neural network for medical application. Multimed. Tools Appl. 79(31), 22277–22292 (2020)

    Google Scholar 

  12. Kumar, M., Chhabra, P., Garg, N.K.: An efficient content-based image retrieval system using BayesNet and K-NN. Multimed. Tools Appl. 77(16), 21557–21570 (2018)

    Google Scholar 

  13. Xu, Y., Zhao, X., Gong, J.: A large-scale secure image retrieval method in cloud environment. IEEE Access 7, 160082–160090 (2019)

    Google Scholar 

  14. Singh, S., Batra, S.: An efficient bi-layer content-based image retrieval system. Multimed. Tools Appl. 79(25), 17731–17759 (2020)

    Google Scholar 

  15. Ashraf, R., Ahmed, M., Jabbar, S., Khalid, S., Ahmad, A., Din, S., Jeon, G.: Content based image retrieval by using color descriptor and discrete wavelet transform. J. Medic Syst. 42(3), 1–2 (2018)

    Google Scholar 

  16. Saritha, R.R., Paul, V., Kumar, P.G.: Content based image retrieval using deep learning process. Clust. Comput. 22(2), 4187–4200 (2019)

    Google Scholar 

  17. Garg, M., Dhiman, G.: A novel content-based image retrieval approach for classification using GLCM features and texture fused LBP variants. Neural Comput. Appl. 33(4), 1311–1328 (2021)

    Google Scholar 

  18. Khan, U.A., Javed, A., Ashraf, R.: An effective hybrid framework for content-based image retrieval (CBIR). Multimed. Tools Appl. 80(17), 26911–26937 (2021)

    Google Scholar 

  19. Iida, K., Kiya, H.: Privacy-preserving content-based image retrieval using compressible encrypted images. IEEE Access8:200038-200050 (2020).

  20. Kashif, M., Raja, G., Shaukat, F.: An efficient content-based image retrieval system for the diagnosis of lung diseases. J. Digit. Imag. 33(4), 971–987 (2020)

    Google Scholar 

  21. Chen, Y., Xia, R., Yang, K., Zou, K.: MFFN: Image super-resolution via multi-level features Fusion Network. Vis, Comput (2023)

    Google Scholar 

  22. Kundu, M.K., Chowdhury, M., Banerjee, M.: Interactive image retrieval using M-band wavelet, earth mover’s distance and fuzzy relevance feedback. Int. J. Machine Learn. Cybernetics 3(4), 285–296 (2012)

    Google Scholar 

  23. Wang, Y., Wang, F.C., Liu, F., Wang, X.H.: Securing content-based image retrieval on the cloud using generative models. Multimed. Tools Appl. 81(22), 31219–31243 (2022)

    Google Scholar 

  24. Tuyet, V.T., Binh, N.T., Quoc, N.K., Khare, A.: Content based medical image retrieval based on salient regions combined with deep learning. Mob. Netw. Appl. 26(3), 1300–1310 (2021)

    Google Scholar 

  25. Sunitha, T., Sivarani, T.S.: An efficient content-based satellite image retrieval system for big data utilizing threshold-based checking method. Earth Sci Informat. 14(4), 1847–1859 (2021)

    Google Scholar 

  26. Wang, Z., Qin, J., Xiang, X., Tan, Y.: A privacy-preserving and traitor tracking content-based image retrieval scheme in cloud computing. Multimed. Syst. 27(3), 403–415 (2021)

    Google Scholar 

  27. Monowar, M.M., Hamid, M.A., Ohi, A.Q., Alassafi, M.O., Mridha, M.F.: AutoRet: a self-supervised spatial recurrent network for content-based image retrieval. Sensors 22(6), 2188 (2022)

    Google Scholar 

  28. Punithavathi, R., Ramalingam, A., Kurangi, C., Reddy, A., Uthayakumar, J.: Secure content-based image retrieval system using deep learning with multi-share creation scheme in cloud environment. Multimed. Tools Appl. 80(17), 26889–26910 (2021)

    Google Scholar 

  29. He, D., He, X., Yuan, R., Li, Y., Shen, C.: Lightweight Network-based multi-modal feature fusion for face anti-spoofing. Vis. Comput. 39, 1423–1435 (2022)

    Google Scholar 

  30. Panigrahi, K.P., Das, H., Sahoo, A.K., Moharana, S.C. (2020) Maize leaf disease detection and classification using machine learning algorithms. In: Progress in Computing, Analytics and Networking 2020, Springer, Singapore

  31. Sharma, A., Mittal, A., Singh, S., Awatramani, V.: Hand gesture recognition using image processing and feature extraction techniques. Procedia Comput. Sci. 173, 181–190 (2020)

    Google Scholar 

  32. Das, P., Neelima, A.: A robust feature descriptor for biomedical image retrieval. IRBM 42(4), 245–257 (2021)

    Google Scholar 

  33. Patil, D., Krishnan, S., Gharge, S.:Medical image retrieval by region-based shape feature for CT images. In: 2019 International Conference on Machine Learning, Big Data, Cloud and Parallel Computing (COMITCon), IEEE, 155-159 (2019).

  34. Arya, R., Agrawal, R.K., Singh, N.: A novel approach for salient object detection using double-density dual-tree complex wavelet transform in conjunction with superpixelsegmentation. Knowl. Inf. Syst. 60(1), 327–361 (2019)

    Google Scholar 

  35. Vard, A., Monadjemi, A., Jamshidi, K., Movahhedinia, N.: Fast texture energy-based image segmentation using directional Walsh-Hadamard transform and parametric active contour models. Expert Syst. Appl. 38(9), 11722–11729 (2011)

    Google Scholar 

  36. Angulakshmi, M., Lakshmi Priya, G.G.: Walsh Hadamard kernel-based texture feature for multimodal MRI brain tumoursegmentation. Int. J. Imag. Syst. Technol. 28(4), 254–266 (2018)

    Google Scholar 

  37. Subba Reddy, T., Harikiran, J., Enduri, M.K., Hajarathaiah, K., Almakdi, S., Alshehri, M., Naveed, Q.N., Rahman, M.H.: Hyperspectral image classification with optimized compressed synergic deep convolution neural network with aquila optimization. Comput. Intell. Neurosci. 2022, 6781740–6781740 (2022)

    Google Scholar 

  38. Reenadevi, R., Sathiya, T., Sathiyabhama, B.: Breast cancer histopathological image classification using augmentation based on optimized deep ResNet-152 structure. Ann. Romanian Soc. Cell. Biol. 25(6), 5866–5874 (2021)

    Google Scholar 

  39. Ahmadianfar, I., Heidari, A.A., Noshadian, S., Chen, H., Gandomi, A.H.: INFO: an efficient optimization algorithm based on weighted mean of vectors. Expert. Syst. Appl. 195, 116516 (2022)

    Google Scholar 

  40. Vharkate, M.N., Musande, V.B.: Remote sensing image retrieval using hybrid visual geometry group network with relevance feedback. Int. J. Remote Sens. 42(14), 5540–5567 (2021)

    Google Scholar 

  41. Putzu, L., Piras, L., Giacinto, G.: Convolutional neural networks for relevance feedback in content based image retrieval. Multimed. Tools Appl. 79(37), 26995–27021 (2020)

    Google Scholar 

  42. https://data.caltech.edu/records/20086.

  43. http://lear.inrialpes.fr/~jegou/data.php#holidays.

  44. Hor, N., Fekri-Ershad, S.: Image retrieval approach based on local texture information derived from predefined patterns and spatial domain information. arXiv preprint arXiv:1912.12978 (2019).

  45. Rajesh, M.B., Sathiamoorthy, S.: Co-occurrence of edges and valleys with support vector machine for content-based image retrieval. In: 2020 Fourth International Conference on Computing Methodologies and Communication (ICCMC) 2020 IEEE465-470 (2020).

  46. Hussain, S., Zia, M.A., Arshad, W.: Additive deep feature optimization for semantic image retrieval. Expert Syst. Appl. 170, 114545 (2021)

    Google Scholar 

  47. Zhang, K., Qi, S., Cai, J., Zhao, D., Yu, T., Yue, Y., Yao, Y., Qian, W.: Content-based image retrieval with a Convolutional Siamese Neural Network: distinguishing lung cancer and tuberculosis in CT images. Comput. Biol. Med. 140, 105096 (2022)

    Google Scholar 

  48. Ghozzi, Y., Baklouti, N., Hagras, H., Ayed, M.B., Alimi, A.M.: Interval Type-2 beta fuzzy near sets approach to content-based image retrieval. IEEE Trans. Fuzzy Syst. 30(3), 805–817 (2021)

    Google Scholar 

  49. Anandababu, P., Kamarasan, M.: An effective content based image retrieval model using improved memetic algorithm. In: 2020 International Conference on Inventive Computation Technologies (ICICT), IEEE, 424-429 (2020).

  50. Li, J., Yang, B., Yang, W., Sun, C., Xu, J.: Subspace-based multi-view fusion for instance-level image retrieval. Visual Comput. 37(3), 619–633 (2021)

    Google Scholar 

  51. Singhal, A., Agarwal, M., Pachori, R.B.: Directional local ternary co-occurrence pattern for natural image retrieval. Multimed. Tools Appl. 80(10), 15901–15920 (2021)

    Google Scholar 

  52. Vaccaro, F., Bertini, M., Uricchio, T., Bimbo, A.D.: Effective triplet mining improves training of multi-scale pooled CNN for image retrieval. Mach. Vis. Appl. 33(1), 1–3 (2022)

    Google Scholar 

  53. Liu, G.H., Wei, Z.: Image retrieval using the fused perceptual color histogram. Comput. Intell. Neurosci. 2020, 8876480 (2020)

    Google Scholar 

  54. Giveki, D., Shakarami, A., Tarrah, H., Soltanshahi, M.A.: A new method for image classification and image retrieval using convolutional neural networks. Concurr. Comput. Pract. Exp. 34(1), e6533 (2022)

    Google Scholar 

  55. Yan, C., Gong, B., Wei, Y., Gao, Y.: Deep multi-view enhancement hashing for Image retrieval. IEEE Trans. Pattern Analysis Machine Intell. 43, 1445–1451 (2021)

    Google Scholar 

  56. Yan, C., Li, Z., Zhang, Y., Liu, Y., Ji, X., Zhang, Y.: Depth image denoising using nuclear norm and learning graph model. ACM Trans. Multimed. Comput. Commun. Appl. 16(4), 1–17 (2020)

    Google Scholar 

  57. Yan, C., Hao, Y., Li, L., Yin, J., Liu, A., Mao, Z., Chen, Z., Gao, X.: Task-adaptive attention for image captioning. IEEE Trans. Circuits Syst. Video Tech. 32, 43–51 (2022)

    Google Scholar 

  58. Yan, C., Teng, T., Liu, Y., Zhang, Y., Wang, H., Ji, X.: Precise no-reference image quality evaluation based on distortion identification. ACM Trans. Multimed. Comput. Commun. Appl. 17, 1–21 (2021)

    Google Scholar 

  59. Yan, C., Meng, L., Li, L., Zhang, J., Wang, Z., Yin, J., Zhang, J., Sun, Y., Zheng, B.: Age-invariant face recognition by multi-feature Fusionand decomposition with self-attention. ACM Trans. Multimed. Comput. Commun. Appl. 18, 1–18 (2022)

    Google Scholar 

  60. Eisenstat, J., Wagner, M.W., Vidarsson, L., Ertl-Wagner, B., Sussman, D.: FET-net algorithm for automatic detection of fetal orientation in fetal MRI. Bioeng. 10, 140 (2023)

    Google Scholar 

  61. Shahid, F., Zameer, A., Iqbal, M.J.: Intelligent forecast engine for short-term wind speed prediction based on stacked long short-term memory. Neural Comput. Appl. 33, 13767–13783 (2021)

    Google Scholar 

  62. Liang, X., Xu, L., Zhang, W., Zhang, Y., Liu, J., Liu, Z.: A convolution-transformer dual branch network for head-pose and occlusion facial expression recognition. Vis. Comput. 39, 2277–2290 (2022)

    Google Scholar 

  63. Challa, S.K., Kumar, A., Semwal, V.B.: A multibranch CNN-BILSTM model for human activity recognition using wearable sensor data. Vis. Comput. 38, 4095–4109 (2021)

    Google Scholar 

  64. Zhang, Q., Ge, Y., Zhang, C., Bi, H.: TPRNet: Camouflaged object detection via transformer-induced progressive refinement network. Vis. Comput. (2022). https://doi.org/10.1007/s00371-022-02611-1

    Article  Google Scholar 

  65. Soroush, R., Baleghi, Y.: NIR/RGB image fusion for scene classification using Deep Neural Networks. Vis. Comput. 39, 2725–2739 (2022)

    Google Scholar 

  66. Yang, H., Fan, Y., Lv, G., Liu, S., Guo, Z.: Exploiting emotional concepts for image emotion recognition. Vis. Comput. 39, 2177–2190 (2022)

    Google Scholar 

  67. Tang, H., Li, Z., Peng, Z., Tang, J.: Blockmix: meta regularization and self-calibrated inference for metric-based meta-learning. In: Proceedings of the 28th ACM international conference on multimedia, 610-618 (2020). https://doi.org/10.1145/3394171.3413884

  68. Tang, H., Liu, J., Yan, S., Yan, R., Li, Z., Tang, J.: M3 Net: Multi-view Encoding, Matching, and Fusion for Few-shot Fine-grained Action Recognition. (2023). arXiv preprint arXiv:2308.03063.

  69. Li, Z., Tang, H., Peng, Z., Qi, G.J., Tang, J.: Knowledge-guided semantic transfer network for few-shot image recognition. IEEE Trans. Neural Netw. Learn. Syst. (2023). https://doi.org/10.1109/TNNLS.2023.3240195

    Article  Google Scholar 

  70. Zha, Z., Tang, H., Sun, Y., Tang, J.: Boosting few-shot fine-grained recognition with background suppression and foreground alignment. IEEE Trans. Circuit. Syst. Video Technol. (2023). https://doi.org/10.1109/TCSVT.2023.3236636

    Article  Google Scholar 

  71. Öztürk, Ş, Çelik, E., Çukur, T.: Content-based medical image retrieval with opponent class adaptive margin loss. Inform. Sci. 637, 118938 (2023)

    Google Scholar 

Download references

Acknowledgement

None.

Funding

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Author information

Authors and Affiliations

Authors

Contributions

All the authors have contributed equally to the work.

Corresponding author

Correspondence to Vishwanath S. Mahalle.

Ethics declarations

Conflict of interest

The authors declare that they have no potential conflict of interest.

Ethical approval

All applicable institutional and/or national guidelines for the care and use of animals were followed.

Informed consent

For this type of analysis formal consent is not needed.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mahalle, V.S., Kandoi, N.M. & Patil, S.B. A powerful method for interactive content-based image retrieval by variable compressed convolutional info neural networks. Vis Comput 40, 5259–5285 (2024). https://doi.org/10.1007/s00371-023-03104-5

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00371-023-03104-5

Keywords

Navigation