Skip to main content
Log in

Robust 3D watermarking with high imperceptibility based on EMD on surfaces

  • Original article
  • Published:
The Visual Computer Aims and scope Submit manuscript

Abstract

The rising use of 3D digital products has increased the demand for copyright protection. In this paper, we propose a novel and robust 3D watermarking method with high imperceptibility based on EMD (empirical mode decomposition) on surfaces. It first defines a normalized modulus signal on a 3D host model so as to involve EMD into 3D watermarking effectively. And then, it extracts different scale features of the defined signal by using EMD to locate the proper embedding positions. After this, the watermark signal is embedded repeatedly and cyclically into the 3D host model to enhance the robustness. The embedding strength is optimized according to a predefined fidelity parameter to control the imperceptibility of the watermark. Many experiment results show that the proposed method can obtain good results against various attacks while maintaining high invisibility, such as pseudo-random noise, Laplacian smoothing, simplification, subdivision, cropping, and similarity transformation. Furthermore, it is very competitive with the current state-of-the-art 3D watermarking techniques in terms of robustness and invisibility.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Algorithm 1
Fig. 4
Algorithm 2
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

Data availability

Data will be made available on request.

References

  1. Ohbuchi, R., Masuda, H., Aono, M.: Embedding data in 3d models, in: International Workshop on Interactive Distributed Multimedia Systems and Telecommunication Services, Springer, pp. 1–10 (1997)

  2. Narendra, M., Valarmathi, M., Anbarasi, L.: Watermarking techniques for three-dimensional (3d) mesh models: a survey. Multimedia Syst. 28(2), 623–641 (2022)

    Article  Google Scholar 

  3. Huang, N.E., Shen, Z., Long, S.R., Wu, M.C., Shih, H.H., Zheng, Q., Yen, N.-C., Tung, C.C., Liu, H.H.: The empirical mode decomposition and the hilbert spectrum for nonlinear and non-stationary time series analysis. Proc. Royal Soc. London Series A Math., Phys. Eng. Sci. 454(1971), 903–995 (1998)

    Article  MathSciNet  Google Scholar 

  4. Nunes, J.C., Bouaoune, Y., Delechelle, E., Niang, O., Bunel, P.: Image analysis by bidimensional empirical mode decomposition. Image Vis. Comput. 21(12), 1019–1026 (2003)

    Article  Google Scholar 

  5. Wang, X., Hu, K., Hu, J., Du, L., Ho, A.T., Qin, H.: Robust and blind image watermarking via circular embedding and bidimensional empirical mode decomposition. Vis. Comput. 36(10), 2201–2214 (2020)

    Article  Google Scholar 

  6. Hu, K., Wang, X., Hu, J., Wang, H., Qin, H.: A novel robust zero-watermarking algorithm for medical images. Vis. Comput. 37(9), 2841–2853 (2021)

    Article  Google Scholar 

  7. Hu, K., Wang, X., Hu, J., Li, D., Du, L., Wang, H., Qin, H.: Robust and efficient image watermarking via emd and dimensionality reduction. Vis. Comput. 38(6), 2153–2170 (2022)

    Article  Google Scholar 

  8. Xie, Q., Hu, J., Wang, X., Zhang, D., Qin, H.: Novel and fast emd-based image fusion via morphological filter. Vis. Comput. 39, 4249–4265 (2023)

    Article  Google Scholar 

  9. Xie, Q., Hu, J., Wang, X., Du, Y., Qin, H.: Novel optimization-based bidimensional empirical mode decomposition. Digital Signal Process. 133, 103891 (2023)

    Article  Google Scholar 

  10. Wang, H., Su, Z., Cao, J., Wang, Y., Zhang, H.: Empirical mode decomposition on surfaces. Graph. Models 74(4), 173–183 (2012)

    Article  Google Scholar 

  11. Wang, X., Hu, J., Zhang, D., Qin, H.: Efficient emd and hilbert spectra computation for 3d geometry processing and analysis via space-filling curve. Vis. Comput. 31(6), 1135–1145 (2015)

    Article  Google Scholar 

  12. Hu, J., Wang, X., Qin, H.: Novel and efficient computation of Hilbert–Huang transform on surfaces. Comput. Aided Geom. Design 43, 95–108 (2016)

    Article  MathSciNet  Google Scholar 

  13. Gao, Y., Li, C.-F., Ren, B., Hu, S.-M.: View-dependent multiscale fluid simulation. IEEE Trans. Visual Comput. Graphics 19(2), 178–188 (2013)

    Article  Google Scholar 

  14. Ren, B., Li, C.-F., Lin, M.C., Kim, T., Hu, S.-M.: Flow field modulation. IEEE Trans. Visual Comput. Graphics 19(10), 1708–1719 (2013)

    Article  Google Scholar 

  15. Benedens, O.: Two high capacity methods for embedding public watermarks into 3d polygonal models, in: Proceedings of the Multimedia and Security-Workshop at ACM Multimedia, Vol. 99, Orlando, Forida, pp. 95–99 (1999)

  16. Wang, Y.-P., Hu, S.-M.: A new watermarking method for 3d models based on integral invariants. IEEE Trans. Visual Comput. Graphics 15(2), 285–294 (2009)

    Article  Google Scholar 

  17. Cho, J.-W., Prost, R., Jung, H.-Y.: An oblivious watermarking for 3-d polygonal meshes using distribution of vertex norms. IEEE Trans. Signal Process. 55(1), 142–155 (2006)

    Article  MathSciNet  Google Scholar 

  18. Sharma, N., Panda, J.: Statistical watermarking approach for 3d mesh using local curvature estimation. IET Inf. Secur. 14(6), 745–753 (2020)

    Article  Google Scholar 

  19. Kashida, N., Hasegawa, K., Uto, T.: 3-d mesh watermarking based on optimized multiple histograms, in: 2020 35th International Technical Conference on Circuits/Systems, Computers and Communications (ITC-CSCC), IEEE, pp. 363–366 (2020)

  20. Medimegh, N., Belaid, S., Atri, M., Werghi, N.: 3d mesh watermarking using salient points. Multimedia Tools Appl. 77(24), 32287–32309 (2018)

    Article  Google Scholar 

  21. Medimegh, N., Belaid, S., Atri, M., Werghi, N.: Statistical 3d watermarking algorithm using non negative matrix factorization. Multimed. Tools and Appl. 79(35), 25889–25904 (2020)

    Article  Google Scholar 

  22. Delmotte, A., Tanaka, K., Kubo, H., Funatomi, T., Mukaigawa, Y.: Blind 3d-printing watermarking using moment alignment and surface norm distribution. IEEE Trans. Multimedia 23, 3467–3482 (2021)

  23. Liu, J., Wang, Y., Li, Y., Liu, R., Chen, J.: A robust and blind 3d watermarking algorithm using multiresolution adaptive parameterization of surface. Neurocomputing 237, 304–315 (2017)

    Article  Google Scholar 

  24. Wang, Y., Liu, J., Yang, Y., Ma, D., Liu, R.: 3d model watermarking algorithm robust to geometric attacks. IET Image Proc. 11(10), 822–832 (2017)

    Article  Google Scholar 

  25. Liu, J., Yang, Y., Ma, D., Wang, Y., Pan, Z.: A watermarking method for 3d models based on feature vertex localization. IEEE Access 6, 56122–56134 (2018)

    Article  Google Scholar 

  26. Hou, J.-U., Kim, D.-G., Lee, H.-K.: Blind 3d mesh watermarking for 3d printed model by analyzing layering artifact. IEEE Trans. Inf. Forensics Secur. 12(11), 2712–2725 (2017)

    Article  Google Scholar 

  27. Ohbuchi, R., Takahashi, S., Miyazawa, T., Mukaiyama, A.: Watermarking 3d polygonal meshes in the mesh spectral domain, in: Graphics interface, Vol. 2001, pp. 9–17 (2001)

  28. Al-Saadi, H.S., Ghareeb, A., Elhadad, A., et al.: A blind watermarking model of the 3d object and the polygonal mesh objects for securing copyright. Comput. Intell. Neurosci. 2021, 11 (2021)

    Google Scholar 

  29. Abulkasim, H., Jamjoom, M., Abbas, S.: Securing copyright using 3d objects blind watermarking scheme. CMC-Comput. Mater. Continua 72(3), 5969–5983 (2022)

    Article  Google Scholar 

  30. Kanai, S., Date, H., Kishinami, T., et al.: Digital watermarking for 3d polygons using multiresolution wavelet decomposition, in: Proc. Sixth IFIP WG, Vol. 5, pp. 296–307 (1998)

  31. Wang, K., Lavou, G., Denis, F., Baskurt, A.: Hierarchical blind watermarking of 3d triangular meshes, in: 2007 IEEE International Conference on Multimedia and Expo, IEEE, pp. 1235–1238 (2007)

  32. Sayahi, I., Jallouli, M., Mabrouk, A.B., Mahjoub, M.A., Amar, C.B.: Robust hybrid watermarking approach for 3d multiresolution meshes based on spherical harmonics and wavelet transform. Multimedia Tools Appl. (2023). https://doi.org/10.1007/s11042-023-14722-5

    Article  Google Scholar 

  33. Bi, N., Sun, Q., Huang, D., Yang, Z., Huang, J.: Robust image watermarking based on multiband wavelets and empirical mode decomposition. IEEE Trans. Image Process. 16(8), 1956–1966 (2007)

    Article  MathSciNet  Google Scholar 

  34. Abbas, N.H., Ahmad, S.M.S., Parveen, S., Wan, W.A., Ramli, A.R.B.: Design of high performance copyright protection watermarking based on lifting wavelet transform and bi empirical mode decomposition. Multimedia Tools Appl. 77(19), 24593–24614 (2018)

    Article  Google Scholar 

  35. Zhang, J., Pan, G., Jiang, C., Zhou, X.: A locatable zero watermarking scheme and visualization for 3d mesh models, in: 2009 Sixth International Conference on Computer Graphics, Imaging and Visualization, IEEE, pp. 510–515 (2009)

  36. Cai, S., Shen, X.: Octree-based robust watermarking for 3d model. J. Multimed. 6(1), 83–90 (2011)

    Article  Google Scholar 

  37. Cui, C., Ni, R., Zhao, Y.: Robust zero watermarking for 3d triangular mesh models based on spherical integral invariants, in: Digital Forensics and Watermarking: 16th International Workshop, IWDW 2017, Magdeburg, Germany, August 23-25, 2017, Proceedings 16, Springer, pp. 318–330 (2017)

  38. Wang, X., Zhan, Y.: A zero-watermarking scheme for three-dimensional mesh models based on multi-features. Multimedia Tools Appl. 78(19), 27001–27028 (2019)

    Article  Google Scholar 

  39. Lee, J.-S., Liu, C., Chen, Y.-C., Hung, W.-C., Li, B.: Robust 3d mesh zero-watermarking based on spherical coordinate and skewness measurement. Multimedia Tools Appl. 80(17), 25757–25772 (2021)

    Article  Google Scholar 

  40. Liu, G., Wang, Q., Wu, L., Pan, R., Wan, B., Tian, Y.: Zero-watermarking method for resisting rotation attacks in 3d models. Neurocomputing 421, 39–50 (2021)

    Article  Google Scholar 

  41. Lee, J.-S., Chen, Y.-C., Chew, C.-J., Hung, W.-C., Fan, Y.-Y., Li, B.: Constructing gene features for robust 3d mesh zero-watermarking. J. Inform. Secur. Appl. 73, 103414 (2023)

    Google Scholar 

  42. Abbas, N.A.: Image encryption based on independent component analysis and Arnold’s cat map. Egypt. Inform. J. 17(1), 139–146 (2016)

    Article  Google Scholar 

  43. Hilbert, D., Hilbert, D.: Über die stetige abbildung einer linie auf ein flächenstück, Dritter Band: Analysis. Grundlagen der Mathematik. Physik Verschiedenes: Nebst Einer Lebensgeschichte 1–2 (1935)

  44. Wang, K., Lavoué, G., Denis, F., Baskurt, A., He, X.: A benchmark for 3d mesh watermarking, in: Shape Modeling International Conference IEEE, 2010, 231–235 (2010)

Download references

Acknowledgements

This work was supported by the Natural Science Foundation of Jilin Province, China (No. 20210101472JC).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaochao Wang.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hu, J., Dai, M., Wang, X. et al. Robust 3D watermarking with high imperceptibility based on EMD on surfaces. Vis Comput 40, 7685–7700 (2024). https://doi.org/10.1007/s00371-023-03201-5

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00371-023-03201-5

Keywords