Skip to main content
Log in

Underwater image sharpening and color correction via dataset based on revised underwater image formation model

  • Original article
  • Published:
The Visual Computer Aims and scope Submit manuscript

Abstract

Underwater images bring about substantial information to many tasks regarding marine science or coastal engineering. Meanwhile, enhancement of serious underwater image degradation like wavelength-dependent color distortion or decreased contrast is essential in practical applications. Although deep learning-based underwater image enhancement methods have increasingly been developed, construction of a large-scale underwater image dataset is still a remaining issue. Currently, expensive cost and the difficulty of measurement disturb collection of real data. On the other hand, alternatively employed synthetic underwater images based on simplified physical model or generative adversarial network may deviate from real data. In order to reduce the domain gap between real and synthetic underwater images, we generate underwater images based on physically revised underwater image formation model. By reformulating the model as Monte Carlo integration in statistical physics, we avoid variable multiplication and enable the calculation. The constructed dataset is shown to include diverse degradation and be closer to real images as well. Subsequently, underwater image color correction is tackled via exemplar-based style transfer to cope with diverse color cast. Finally, simply designed image sharpening algorithm combining discrete wavelet transform and Laplacian pyramid is proposed to improve the visibility. The proposed scheme mainly achieves superior or competitive performance compared to other latest methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Algorithm 1
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

Data Availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. Akkaynak, D., Treibitz, T.: A revised underwater image formation model. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2018)

  2. Akkaynak, D., Treibitz, T.: Sea-thru: a method for removing water from underwater images. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (2019)

  3. Akkaynak, D., Treibitz, T., Shlesinger, T., Loya, Y., Tamir, R., Iluz, D.: What is the space of attenuation coefficients in underwater computer vision? In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2017)

  4. Ancuti, C.O., Ancuti, C., De Vleeschouwer, C., Bekaert, P.: Color balance and fusion for underwater image enhancement. IEEE Transact. Image Process. 27(1), 379–393 (2018). https://doi.org/10.1109/TIP.2017.2759252

    Article  MathSciNet  MATH  Google Scholar 

  5. Anwar, S., Li, C.: Diving deeper into underwater image enhancement: a survey. Signal Process. Image Commun. 89, 115978 (2020)

    Article  Google Scholar 

  6. Aubry, M., Paris, S., Hasinoff, S.W., Kautz, J., Durand, F.: Fast local Laplacian filters: theory and applications. ACM Transact. Graph. (TOG) 33(5), 1–14 (2014)

    Article  MATH  Google Scholar 

  7. Bojanowski, P., Joulin, A., Lopez-Pas, D., Szlam, A.: Optimizing the latent space of generative networks. In: J. Dy, A. Krause (eds.) Proceedings of the 35th International Conference on Machine Learning, Proceedings of Machine Learning Research, vol. 80, pp. 600–609. PMLR (2018). https://proceedings.mlr.press/v80/bojanowski18a.html

  8. Burt, P.J., Adelson, E.H.: The Laplacian pyramid as a compact image code. In: Readings in Computer Vision, pp. 671–679. Elsevier (1987)

  9. Caflisch, R.E.: Monte Carlo and quasi-monte Carlo methods. Acta Numer. 7, 1–49 (1998). https://doi.org/10.1017/S0962492900002804

    Article  MathSciNet  MATH  Google Scholar 

  10. Cao, B., Bi, Z., Hu, Q., Zhang, H., Wang, N., Gao, X., Shen, D.: Autoencoder-driven multimodal collaborative learning for medical image synthesis. International J. Comput. Vis. pp. 1–20 (2023)

  11. Cao, B., Sun, Y., Zhu, P., Hu, Q.: Multi-modal gated mixture of local-to-global experts for dynamic image fusion. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 23555–23564 (2023)

  12. Chen, Y.W., Pei, S.C.: Domain adaptation for underwater image enhancement via content and style separation. IEEE Access 10, 90523–90534 (2022)

    Article  MATH  Google Scholar 

  13. Chiang, J.Y., Chen, Y.C.: Underwater image enhancement by wavelength compensation and dehazing. IEEE Transact. Image Process. 21(4), 1756–1769 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  14. Cho, W., Choi, S., Park, D.K., Shin, I., Choo, J.: Image-to-image translation via group-wise deep whitening-and-coloring transformation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 10639–10647 (2019)

  15. Demirel, H., Anbarjafari, G.: Image resolution enhancement by using discrete and stationary wavelet decomposition. IEEE Transact. Image Process. 20(5), 1458–1460 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  16. Fabbri, C., Islam, M.J., Sattar, J.: Enhancing underwater imagery using generative adversarial networks. In: 2018 IEEE International Conference on Robotics and Automation (ICRA), pp. 7159–7165 (2018). https://doi.org/10.1109/ICRA.2018.8460552

  17. Fu, X., Ding, X., Liang, Z., Wang, Y.: Jointly adversarial networks for wavelength compensation and dehazing of underwater images. Multimed. Tools Appl. 82(21), 32941–32965 (2023). https://doi.org/10.1007/s11042-023-14871-7

    Article  MATH  Google Scholar 

  18. Fu, X., Zhuang, P., Huang, Y., Liao, Y., Zhang, X., Ding, X.: A retinex-based enhancing approach for single underwater image. In: 2014 IEEE International Conference on Image Processing (ICIP), pp. 4572–4576 (2014). https://doi.org/10.1109/ICIP.2014.7025927

  19. Fu, Z., Wang, W., Huang, Y., Ding, X., Ma, K.K.: Uncertainty inspired underwater image enhancement. In: European Conference on Computer Vision, pp. 465–482. Springer (2022)

  20. Gao, W., Zhang, X., Yang, L., Liu, H.: An improved sobel edge detection. In: 2010 3rd International Conference on Computer Science and Information Technology, vol. 5, pp. 67–71. IEEE (2010)

  21. Gatys, L.A., Ecker, A.S., Bethge, M.: Image style transfer using convolutional neural networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2414–2423 (2016)

  22. Hastings, W.K.: Monte Carlo sampling methods using Markov chains and their applications. Biometrika 57(1), 97–109 (1970). https://doi.org/10.1093/biomet/57.1.97

    Article  MathSciNet  MATH  Google Scholar 

  23. Huang, S., Wang, K., Liu, H., Chen, J., Li, Y.: Contrastive semi-supervised learning for underwater image restoration via reliable bank. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 18145–18155 (2023)

  24. Huang, X., Belongie, S.: Arbitrary style transfer in real-time with adaptive instance normalization. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1501–1510 (2017)

  25. Hunt, R.W.G., Pointer, M.R.: Measuring Colour. Wiley (2011)

  26. Islam, M.J., Luo, P., Sattar, J.: Simultaneous enhancement and super-resolution of underwater imagery for improved visual perception. In: Robotics: Science and Systems (RSS). Corvalis, Oregon, USA (2020). https://doi.org/10.15607/RSS.2020.XVI.018

  27. Islam, M.J., Xia, Y., Sattar, J.: Fast underwater image enhancement for improved visual perception. IEEE Robot. Autom. Lett. 5(2), 3227–3234 (2020). https://doi.org/10.1109/LRA.2020.2974710

    Article  MATH  Google Scholar 

  28. Jerlov, N.G.: Marine Optics. Elsevier (1976)

  29. Jiang, J., Liu, D., Gu, J., Süsstrunk, S.: What is the space of spectral sensitivity functions for digital color cameras? In: 2013 IEEE Workshop on Applications of Computer Vision (WACV), pp. 168–179 (2013). https://doi.org/10.1109/WACV.2013.6475015

  30. Jinjin, G., Haoming, C., Haoyu, C., Xiaoxing, Y., Ren, J.S., Chao, D.: Pipal: a large-scale image quality assessment dataset for perceptual image restoration. In: European Conference on Computer Vision, pp. 633–651. Springer (2020)

  31. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014)

  32. Koschmieder, H.: Theorie der horizontalen sichtweite. Beitrage zur Physik der freien Atmosphare pp. 33–53 (1924)

  33. Li, C., Anwar, S., Hou, J., Cong, R., Guo, C., Ren, W.: Underwater image enhancement via medium transmission-guided multi-color space embedding. IEEE Transact. Image Process. 30, 4985–5000 (2021)

    Article  Google Scholar 

  34. Li, C., Anwar, S., Porikli, F.: Underwater scene prior inspired deep underwater image and video enhancement. Pattern Recogn. 98, 107038 (2020)

    Article  MATH  Google Scholar 

  35. Li, C., Guo, C., Ren, W., Cong, R., Hou, J., Kwong, S., Tao, D.: An underwater image enhancement benchmark dataset and beyond. IEEE Transact. Image Process. 29, 4376–4389 (2020). https://doi.org/10.1109/TIP.2019.2955241

    Article  Google Scholar 

  36. Liu, K., Liang, Y.: Enhancement of underwater optical images based on background light estimation and improved adaptive transmission fusion. Opt. Express 29(18), 28307–28328 (2021)

    Article  Google Scholar 

  37. M Uplavikar, P., Wu, Z., Wang, Z.: All-in-one underwater image enhancement using domain-adversarial learning. In: The IEEE Conference on Computer Vision and Pattern Recognition (CVPR) Workshops (2019)

  38. Mao, X., Li, Q., Xie, H., Lau, R.Y., Wang, Z., Paul Smolley, S.: Least squares generative adversarial networks. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 2794–2802 (2017)

  39. Ouyang, T., Zhang, Y., Zhao, H., Cui, Z., Yang, Y., Xu, Y.: A multi-color and multistage collaborative network guided by refined transmission prior for underwater image enhancement. Vis. Comput. (2024). https://doi.org/10.1007/s00371-023-03215-z

    Article  MATH  Google Scholar 

  40. Panetta, K., Gao, C., Agaian, S.: Human-visual-system-inspired underwater image quality measures. IEEE J. Ocean. Eng. 41(3), 541–551 (2015)

    Article  MATH  Google Scholar 

  41. Pascale, D.: Rgb Coordinates of the macbeth colorchecker. The BabelColor Company 6 (2006)

  42. Peli, E.: Contrast in complex images. JOSA A 7(10), 2032–2040 (1990)

    Article  MATH  Google Scholar 

  43. Peng, L., Zhu, C., Bian, L.: U-shape transformer for underwater image enhancement. IEEE Transactions on Image Processing (2023)

  44. Schechner, Y.Y., Karpel, N.: Recovery of underwater visibility and structure by polarization analysis. IEEE J. Ocean. Eng. 30(3), 570–587 (2005)

    Article  MATH  Google Scholar 

  45. Schettini, R., Corchs, S.: Underwater image processing: state of the art of restoration and image enhancement methods. EURASIP J. Adv. Signal Process. 2010, 1–14 (2010)

    Article  MATH  Google Scholar 

  46. Silberman, N., Hoiem, D., Kohli, P., Fergus, R.: Indoor segmentation and support inference from RGBD images. In: Fitzgibbon, A., Lazebnik, S., Perona, P., Sato, Y., Schmid, C. (eds.) Computer Vision - ECCV 2012, pp. 746–760. Springer, Berlin Heidelberg, Berlin, Heidelberg (2012)

    Chapter  MATH  Google Scholar 

  47. Simonyan, K., Zisserman, A.: Very Deep Convolutional Networks for Large-Scale Image Recognition. arXiv preprint arXiv:1409.1556 (2014)

  48. Solonenko, M.G., Mobley, C.D.: Inherent optical properties of Jerlov water types. Appl. Opt. 54(17), 5392–5401 (2015)

    Article  MATH  Google Scholar 

  49. Takao, S.: Zero-shot image enhancement with renovated laplacian pyramid. In: European Conference on Computer Vision Workshops, pp. 721–737. Springer (2022)

  50. Wang, W., Dang, Z., Hu, Y., Fua, P., Salzmann, M.: Robust differentiable SVD. IEEE transactions on pattern analysis and machine intelligence (2021)

  51. Wang, Y., Song, W., Fortino, G., Qi, L., Zhang, W., Liotta, A.: An experimental-based review of image enhancement and image restoration methods for underwater imaging. IEEE Access 7, 140233–140251 (2019). https://doi.org/10.1109/ACCESS.2019.2932130

    Article  Google Scholar 

  52. Wu, Y., He, K.: Group normalization. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 3–19 (2018)

  53. Xue, Q., Hu, H., Bai, Y., Cheng, R., Wang, P., Song, N.: Underwater image enhancement algorithm based on color correction and contrast enhancement. Vis. Comput. (2023). https://doi.org/10.1007/s00371-023-03117-0

    Article  MATH  Google Scholar 

  54. Yang, M., Sowmya, A.: An underwater color image quality evaluation metric. IEEE Transact. Image Process. 24(12), 6062–6071 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  55. Yoo, J., Uh, Y., Chun, S., Kang, B., Ha, J.W.: Photorealistic style transfer via wavelet transforms. In: Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV) (2019)

  56. Zhang, Y., Tian, Y., Kong, Y., Zhong, B., Fu, Y.: Residual dense network for image super-resolution. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2472–2481 (2018)

  57. Zhou, J., Wei, X., Shi, J., Chu, W., Lin, Y.: Underwater image enhancement via two-level wavelet decomposition maximum brightness color restoration and edge refinement histogram stretching. Opt. Express 30(10), 17290–17306 (2022)

    Article  Google Scholar 

  58. Zhou, Y., Yan, K.: Domain Adaptive Adversarial Learning Based on Physics Model Feedback for Underwater Image Enhancement. arXiv preprint arXiv:2002.09315 (2020)

  59. Zhu, J.Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 2223–2232 (2017)

  60. Zhuang, P., Wu, J., Porikli, F., Li, C.: Underwater image enhancement with hyper-Laplacian reflectance priors. IEEE Transact. Image Process. 31, 5442–5455 (2022)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shunsuke Takao.

Ethics declarations

Conflict of interest

The authors declare that they have no Conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Takao, S. Underwater image sharpening and color correction via dataset based on revised underwater image formation model. Vis Comput 41, 975–990 (2025). https://doi.org/10.1007/s00371-024-03377-4

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00371-024-03377-4

Keywords