Abstract
In this paper, we present a novel particle-based method for simulating erosion on various terrain representations, including height fields, voxel grids, material layers, and implicit terrains. Our approach breaks down erosion into two key processes—terrain alteration and material transport—allowing for flexibility in simulation. We utilize independent particles governed by basic particle physics principles, enabling efficient parallel computation. For increased precision, a vector field can adjust particle speed, adaptable for realistic fluid simulations or user-defined control. We address material alteration in 3D terrains with a set of equations applicable across diverse models, requiring only per-particle specifications for size, density, coefficient of restitution, and sediment capacity. Our modular algorithm is versatile for real-time and offline use, suitable for both 2.5D and 3D terrains.
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Argudo, O., Galin, E., Peytavie, A., Paris, A., Guérin, E.: Simulation, modeling and authoring of glaciers. ACM Trans. Gr. 39, 1–14 (2020). https://doi.org/10.1145/3414685.3417855
Baraff, D., Witkin, A.: Large steps in cloth simulation. In: Proceedings of the 25th Annual Conference on Computer Graphics and Interactive Techniques, SIGGRAPH 1998, pp. 43–54 (1998). https://doi.org/10.1145/280814.280821
Beardall, M., Butler, J., Farley, M., Jones, M.D.: Directable weathering of concave rock using curvature estimation. IEEE Trans. Vis. Comput. Gr. 16(1), 81–94 (2010). https://doi.org/10.1109/TVCG.2009.39
Becher, M., Krone, M., Reina, G., Ertl, T.: Feature-based volumetric terrain generation. In: Proceedings - I3D 2017: 21st ACM SIGGRAPH Symposium on Interactive 3D Graphics and Games (2017). https://doi.org/10.1145/3023368.3023383
Beneš, B., Těšínský, V., Hornyš, J., Bhatia, S.K.: Hydraulic erosion. Comput. Anim. Virtual Worlds 17(2), 99–108 (2006). https://doi.org/10.1002/cav.77
Beneš, B., Forsbach, R.: Layered data representation for visual simulation of terrain erosion. In: Proceedings - Spring Conference on Computer Graphics, SCCG 2001, pp. 80–86 (2001). https://doi.org/10.1109/SCCG.2001.945341
Caretto, L.S., Gosman, A.D., Patankar, S.V., Spalding, D.B.: Two calculation procedures for steady, three-dimensional flows with recirculation. In: Proceedings of the Third International Conference on Numerical Methods in Fluid Mechanics, vol. 19, pp. 60–68 (1973)
Cordonnier, G., Braun, J., Cani, M.P., Beneš, B., Peytavie, A., Guérin, É.: Large scale terrain generation from tectonic uplift and fluvial erosion. IEEE Trans. Vis. Comput. Graph. (2017). https://doi.org/10.1109/TVCG.2017.2689022
Cordonnier, G., Cani, M.P., Beneš, B., Braun, J., Galin, É.: Sculpting mountains: interactive terrain modeling based on subsurface geology. IEEE Trans. Vis. Comput. Graph. (2018). https://doi.org/10.1109/TVCG.2017.2689022
Cordonnier, G., Ecormier-nocca, P., Galin, É., Gain, J., Beneš, B., Cani, M.P.: Interactive generation of time-evolving, snow-covered landscapes with avalanches. Comput. Graph. Forum 37(2), 497–509 (2018). https://doi.org/10.1111/cgf.13379
Cordonnier, G., Galin, É., Gain, J., Beneš, B., Guérin, É., Peytavie, A., Cani, M.P.: Authoring landscapes by combining ecosystem and terrain erosion simulation. ACM Trans. Graph. (2017). https://doi.org/10.1145/3072959.3073667
Cordonnier, G., Jouvet, G., Peytavie, A., Braun, J., Cani, M.P., Benes, B., Galin, E., Guérin, E., Gain, J.: Forming terrains by glacial erosion. ACM Trans. Graph. 42, 14 (2023). https://doi.org/10.1145/3592422
Dey, R., Doig, J.G., Gatzidis, C.: Procedural feature generation for volumetric terrains using voxel grammars. Entertain. Comput. 27, 128–136 (2018). https://doi.org/10.1016/j.entcom.2018.04.003
Eisemann, E., Decoret, X.: Single-pass gpu solid voxelization for real-time applications, pp. 73–80 (2008)
Emilien, A., Poulin, P., Cani, M.P., Vimont, U.: Interactive procedural modelling of coherent waterfall scenes. Comput. Graph. Forum 34, 22–35 (2015). https://doi.org/10.1111/cgf.12515
Gain, J., Marais, P., Straßer, W.: Terrain sketching. In: Proceedings of I3D 2009: the 2009 ACM SIGGRAPH Symposium on Interactive 3D Graphics and Games, vol. 1(212), pp. 31–38 (2009). https://doi.org/10.1145/1507149.1507155
Galin, E., Guérin, E., Peytavie, A., Cordonnier, G., Cani, M.P., Benes, B., Gain, J.: A review of digital terrain modeling. Comput. Graph. Forum 38, 553–577 (2019). https://doi.org/10.1111/cgf.13657
Guérin, É., Digne, J., Galin, É., Peytavie, A.: Sparse representation of terrains for procedural modeling. Comput. Graph. Forum 35(2), 177–187 (2016). https://doi.org/10.1111/cgf.12821
Guérin, E., Peytavie, A., Masnou, S., Digne, J., Sauvage, B., Gain, J., Galin, E.: Gradient terrain authoring. Comput. Graph. Forum 41, 85–95 (2022). https://doi.org/10.1111/cgf.14460
Hong, Q.: A skeleton-based technique for modelling implicit surfaces. In: Proceedings of the 2013 6th International Congress on Image and Signal Processing, CISP 2013, vol. 2(Cisp), pp. 686–691 (2013). https://doi.org/10.1109/CISP.2013.6745253
Ito, T., Fujimoto, T., Muraoka, K., Chiba, N.: Modeling rocky scenery taking into account joints. In: Proceedings of Computer Graphics International Conference, CGI 2003-Janua(July 2014), pp. 244–247 (2003). https://doi.org/10.1109/CGI.2003.1214475
Jones, B.D., Williams, J.R.: Fast computation of accurate sphere-cube intersection volume. Eng. Comput. 34, 1204–1216 (2017). https://doi.org/10.1108/EC-02-2016-0052
Kaufman, A., Cohen, D Yagel, R,: Volume graphics. Computer 26(7), 51–64 (1993). https://doi.org/10.1109/MC.1993.274942
Koschier, D., Bender, J., Solenthaler, B., Teschner, M.: A survey on SPH methods in computer graphics. Comput. Graph. Forum 41(2), 737–760 (2022). https://doi.org/10.1111/cgf.14508
Krištof, P., Beneš, B., Křivánek, J., Št’ava, O.: Hydraulic erosion using smoothed particle hydrodynamics. Comput. Graph. Forum 28(2), 219–228 (2009). https://doi.org/10.1111/j.1467-8659.2009.01361.x
Lengyel, E.: Voxel-based terrain for real-time virtual simulations, p. 148 (2010)
Mei, X., Decaudin, P., Hu, B.G.: Fast hydraulic erosion simulation and visualization on GPU. In: Proceedings - Pacific Conference on Computer Graphics and Applications, pp. 47–56 (2007). https://doi.org/10.1109/PG.2007.27
Musgrave, F.K., Kolb, C.E., Mace, R.S.: The synthesis and rendering of eroded fractal terrains. In: Proceedings of the 16th Annual Conference on Computer Graphics and Interactive Techniques, SIGGRAPH 1989, pp. 41–50 (1989). https://doi.org/10.1145/74333.74337
Neidhold, B., Wacker, M., Deussen, O.: Interactive physically based fluid and erosion simulation. Natural Phenomena, pp. 25–32 (2005)
O’Brien, J.F., Hodgins, J.K.: Dynamic simulation of splashing fluids. In: Proceedings Computer Animation, CA, pp. 198–205 (1995). https://doi.org/10.1109/CA.1995.393532
Olsen, J.: Realtime procedural terrain generation. Department of Mathematics And Computer Science ( ...) p. 20 (2004)
Onoue, K., Nishita, T.: A method for modeling and rendering dunes with wind-ripples. In: Proceedings - Pacific Conference on Computer Graphics and Applications 2000-January, pp. 427–428 (2000). https://doi.org/10.1109/PCCGA.2000.883978
Paris, A., Galin, E., Peytavie, A., Guérin, E., Gain, J.: Terrain amplification with implicit 3d features. ACM Trans. Graph. 38, 1–15 (2019). https://doi.org/10.1145/3342765
Paris, A., Guérin, E., Peytavie, A., Collon, P., Galin, E.: Synthesizing geologically coherent cave networks. Comput. Graph. Forum 40, 277–287 (2021). https://doi.org/10.1111/cgf.14420
Paris, A., Peytavie, A., Guérin, E., Argudo, O., Galin, E.: Desertscape simulation. Comput. Graph. Forum 38, 47–55 (2019). https://doi.org/10.1111/cgf.13815
Peytavie, A., Galin, E., Grosjean, J., Merillou, S.: Arches: a framework for modeling complex terrains. Comput. Graph. Forum 28, 457–467 (2009). https://doi.org/10.1111/j.1467-8659.2009.01385.x
Ranz, W.E., Talandis, G.R., Gutterman, B.: Mechanics of particle bounce. I.Ch.E. J 6, 124–127 (1960)
Richardson, J.F., Zaki, W.N.: The sedimentation of a suspension of uniform spheres under conditions of viscous flow. Chem. Eng. Sci. 3 (1954)
Rigaudière, D., Gesquière, G., Faudot, D.: Shape Modelling with Skeleton based Implicit Primitives. Methods (2000)
Roa, T., Benes, B.: Simulating desert scenery. Winter School of Computer Graphics SHORT communication Papers. In: Proceedings, pp. 17–22 (2004)
Roose, D., Leuven, K.U., López, Y.R.: Dynamic refinement for fluid flow simulations with sph particle refinement for fluid flow simulations with sph (2011)
Roudier, P., Peroche, B., Perrin, M.: Landscapes Synthesis Achieved through Erosion and Deposition Process Simulation. Computer Graphics Forum 12(3), 375–383 (1993). https://doi.org/10.1111/1467-8659.1230375
Schott, H., Paris, A., Fournier, L., Guérin, E., Galin, E.: Large-scale terrain authoring through interactive erosion simulation (2023)
Smelik, R.M., Kraker, K.J.D., Groenewegen, S.A., Tutenel, T., Bidarra, R.: A survey of procedural methods for terrain modelling. Proceedings of the CASA workshop on 3D advanced media in gaming and simulation (3AMIGAS) (2009)
Stachniak, S., Stuerzlinger, W.: An algorithm for automated fractal terrain deformation. In Proceedings of Computer Graphics and Artificial Intelligence pp. 64–76 (2005)
Stam, J.: Stable fluids. Proceedings of the 26th Annual Conference on Computer Graphics and Interactive Techniques, SIGGRAPH 1999 pp. 121–128 (1999). https://doi.org/10.1145/311535.311548
Stam, J.: Flows on surfaces of arbitrary topology. ACM Transactions on Graphics 22(3), 724–731 (2003). https://doi.org/10.1145/882262.882338
Stokes, G.G.: On the Effect of the Internal Friction of Fluids on the Motion of Pendulums, pp. 1–10. Cambridge University Press (2009). https://doi.org/10.1017/CBO9780511702266.002
Swope, W.C., Andersen, H.C., Berens, P.H., Wilson, K.R.: A computer simulation method for the calculation of equilibrium constants for the formation of physical clusters of molecules: Application to small water clusters. J. Chem. Phys. 76(1), 637–649 (1982). https://doi.org/10.1063/1.442716
Tychonievich, L.A., Jones, M.D.: Delaunay deformable mesh for the weathering and erosion of 3D terrain. Visual Computer 26(12), 1485–1495 (2010). https://doi.org/10.1007/s00371-010-0506-2
Verlet, L.: Computer "experiments" on classical fluids. i. thermodynamical properties of lennard-jones molecules. Phys. Rev. 159, 98–103 (1967). https://doi.org/10.1103/PhysRev.159.98
Wojtan, C., Carlson, M., Mucha, P.J., Turk, G.: Animating corrosion and erosion. Natural Phenomena pp. 15–22 (2007)
Yan, P., Zhang, J., Kong, X., Fang, Q.: Numerical simulation of rockfall trajectory with consideration of arbitrary shapes of falling rocks and terrain. Computers and Geotechnics 122 (2020). https://doi.org/10.1016/j.compgeo.2020.103511
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
A Computation of a metaball
A Computation of a metaball
We use the following formula to evaluate a metaball in space with a center c and of radius R:
using the Euclidean distance.
We have a total amount \( Q \) to define in this space, so the final metaball function f needs to satisfy Eqs. (15) and (16):
First, let’s exploit the radial symmetry of the metaball and rewrite \(g(p) = 1 - r\) by using the polar coordinates of the point \(p - c\).
We can then integrate g over the volume \(V_{3D}\) as
We then break down the integrals one by one such as
By combining all these integrals, we get \(\int {g} = \frac{1}{12} \times 2 \times 2\pi = \frac{\pi }{3}\).
So given \(\int {f} = q_\textrm{detachment} \) and \(\int {f} = \lambda \int {g}\), we can deduce that \(\lambda = \frac{ Q }{\int {g}} = \frac{3}{\pi } Q \).
From (15) we finally get
, representing the rate of change on the evaluation function of the terrain surface.
The integration in the voxel space is out of the scope of this paper and a numerical solution is instead proposed in Sect. 4.4.
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Hartley, M., Mellado, N., Fiorio, C. et al. Flexible terrain erosion. Vis Comput 40, 4593–4607 (2024). https://doi.org/10.1007/s00371-024-03444-w
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00371-024-03444-w