Skip to main content

Advertisement

Log in

EasyRP-R-CNN: a fast cyclone detection model

  • Research
  • Published:
The Visual Computer Aims and scope Submit manuscript

Abstract

Efficient and accurate cyclone detection is essential for avoiding or reducing severe damage in coastal areas. However, traditional detection methods fail to provide accurate results with efficiency. To respond, we propose a convolutional-based cyclone detection framework, EasyRP-R-CNN, focusing on improving efficiency while minimizing the loss of accuracy. Our detection method utilizes satellite cloud images in the visible light band to improve detection accuracy. We designed a new Region of Interest (ROI) selection mechanism, named Easy Region Proposal, and a scale-based ROI grouping module to avoid classifying undersized ROIs. Experimental results demonstrate that our method exhibits satisfactory detection accuracy for cyclones of various intensities, with improved detection efficiency.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Algorithm 1
Algorithm 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

Data availability

The FY-Series satellite dataset is available at https://satellite.nsmc.org.cn/PortalSite/Data/Satellite.aspx, China Meteorological Administration tropical cyclone best track dataset is available at https://tcdata.typhoon.org.cn/zjljsjj.html, and International Best Track Archive for Climate Stewardship dataset is available at https://www.ncei.noaa.gov/products/international-best-track-archive.

References

  1. The Central People Government of the People Republic of China. http://www.gov.cn/xinwen/2023-01/13/content_5736666.html. Accessed 13 Jan 2023

  2. Wang, S., Toumi, R.: Recent migration of tropical cyclones toward coasts. Science 371(6528), 514–517 (2021). https://doi.org/10.1126/science.abb9038

    Article  Google Scholar 

  3. Kossin, J.P.: A global slowdown of tropical-cyclone translation speed. Nature 558(7708), 104–107 (2018). https://doi.org/10.1038/s41586-018-0158-3

    Article  Google Scholar 

  4. Wang, C., Li, X.: Deep learning in extracting tropical cyclone intensity and wind radius information from satellite infrared images-a review. Atmos. Ocean. Sci. Lett. 16(4), 100373 (2023)

    Article  Google Scholar 

  5. Abraham, K., Abdelwahab, M., Abo-Zahhad, M.: Classification and detection of natural disasters using machine learning and deep learning techniques: A review. Earth Sci. Inform. 17(2), 869–891 (2024)

    Article  Google Scholar 

  6. Ren, S., He, K., Girshick, R., Sun, J.: Faster r-cnn: Towards real-time object detection with region proposal networks. IEEE Trans. Pattern Anal. Mach. Intell. 39(6), 1137–1149 (2017). https://doi.org/10.1109/TPAMI.2016.2577031

    Article  Google Scholar 

  7. Dvorak, V.F.: Tropical cyclone intensity analysis and forecasting from satellite imagery. Mon. Weather Rev. 103(5), 420–430 (1975)

    Article  Google Scholar 

  8. Lee, R.S., Lin, J.: An elastic contour matching model for tropical cyclone pattern recognition. IEEE Trans. Syst. Man Cybern. Part B (Cybern.) 31(3), 413–417 (2001)

    Article  Google Scholar 

  9. Piñeros, M.F., Ritchie, E.A., Tyo, J.S.: Detecting tropical cyclone genesis from remotely sensed infrared image data. IEEE Geosci. Remote Sens. Lett. 7(4), 826–830 (2010)

    Article  Google Scholar 

  10. Ho, S.-S.: An effective vortex detection approach for velocity vector field. In: Proceedings of the 21st International Conference on Pattern Recognition (ICPR2012), pp. 2643–2646. IEEE (2012)

  11. Jin, S., Wang, S., Li, X., Jiao, L., Zhang, J.A., Shen, D.: A salient region detection and pattern matching-based algorithm for center detection of a partially covered tropical cyclone in a sar image. IEEE Trans. Geosci. Remote Sens. 55(1), 280–291 (2016)

    Article  Google Scholar 

  12. Han, H., Lee, S., Im, J., Kim, M., Lee, M.-I., Ahn, M.H., Chung, S.-R.: Detection of convective initiation using meteorological imager onboard communication, ocean, and meteorological satellite based on machine learning approaches. Remote Sens. 7(7), 9184–9204 (2015)

    Article  Google Scholar 

  13. Zhang, W., Fu, B., Peng, M.S., Li, T.: Discriminating developing versus nondeveloping tropical disturbances in the western north pacific through decision tree analysis. Weather Forecast. 30(2), 446–454 (2015)

    Article  Google Scholar 

  14. Kim, M., Park, M.-S., Im, J., Park, S., Lee, M.-I.: Machine learning approaches for detecting tropical cyclone formation using satellite data. Remote Sens. 11(10), 1195 (2019)

    Article  Google Scholar 

  15. Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification with deep convolutional neural networks. Adv. Neural. Inf. Process. Syst. 25, 1097–1105 (2012)

    Google Scholar 

  16. Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S., Courville, A., Bengio, Y.: Generative adversarial nets. Adv. Neural. Inf. Process. Syst. 27, 2672–2680 (2014)

    Google Scholar 

  17. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016)

  18. Redmon, J., Divvala, S., Girshick, R., Farhadi, A.: You only look once: Unified, real-time object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 779–788 (2016)

  19. Liu, W., Anguelov, D., Erhan, D., Szegedy, C., Reed, S., Fu, C.-Y., Berg, A.C.: Ssd: Single shot multibox detector. In: Computer Vision–ECCV 2016: 14th European Conference, Amsterdam, The Netherlands, October 11–14, 2016, Proceedings, Part I 14, pp. 21–37 . Springer (2016)

  20. Girshick, R., Donahue, J., Darrell, T., Malik, J.: Rich feature hierarchies for accurate object detection and semantic segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 580–587 (2014)

  21. Girshick, R.: Fast r-cnn. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1440–1448 (2015)

  22. He, K., Gkioxari, G., Dollár, P., Girshick, R.: Mask r-cnn. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 2961–2969 (2017)

  23. Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: Medical Image Computing and Computer-Assisted Intervention–MICCAI 2015: 18th International Conference, Munich, Germany, October 5-9, 2015, Proceedings, Part III 18, pp. 234–241 . Springer (2015)

  24. Accarino, G., Donno, D., Immorlano, F., Elia, D., Aloisio, G.: An ensemble machine learning approach for tropical cyclone detection using era5 reanalysis data. arXiv preprint arXiv:2306.07291 (2023)

  25. Malothu, N., Prasad, V.V.K.D.V., Krishna, B.T.: Tropical cyclone detection in south Pacific and Atlantic coastal area using optical flow estimation and resnet deep learning model. Acta Geophysica 70(6), 2855–2871 (2022)

    Article  Google Scholar 

  26. Wang, P., Wang, P., Wang, C., Yuan, Y., Wang, D.: A center location algorithm for tropical cyclone in satellite infrared images. IEEE J. Select. Top. App. Earth Observ. Remote Sens. 13, 2161–2172 (2020)

    Article  Google Scholar 

  27. Xie, M., Li, Y., Cao, K.: Global cyclone and anticyclone detection model based on remotely sensed wind field and deep learning. Remote Sens. 12(19), 3111 (2020)

    Article  Google Scholar 

  28. Xie, M., Li, Y., Dong, S.: A deep-learning-based fusion approach for global cyclone detection using multiple remote sensing data. IEEE J. Select. Top. Appl. Earth Observ. Remote Sens. 15, 9613–9622 (2022)

    Article  Google Scholar 

  29. Lam, L., George, M., Gardoll, S., Safieddine, S., Whitburn, S., Clerbaux, C.: Tropical cyclone detection from the thermal infrared sensor iasi data using the deep learning model yolov3. Atmosphere 14(2), 215 (2023)

    Article  Google Scholar 

  30. Shakya, S., Kumar, S., Goswami, M.: Deep learning algorithm for satellite imaging based cyclone detection. IEEE J. Select. Top. Appl. Earth Observ. Remote Sens. 13, 827–839 (2020). https://doi.org/10.1109/JSTARS.2020.2970253

    Article  Google Scholar 

  31. Pang, S., Xie, P., Xu, D., Meng, F., Tao, X., Li, B., Li, Y., Song, T.: Ndftc: a new detection framework of tropical cyclones from meteorological satellite images with deep transfer learning. Remote Sens. 13(9), 1860 (2021)

    Article  Google Scholar 

  32. Kumler-Bonfanti, C., Stewart, J., Hall, D., Govett, M.: Tropical and extratropical cyclone detection using deep learning. J. Appl. Meteorol. Climatol. 59(12), 1971–1985 (2020)

    Article  Google Scholar 

  33. Ying, M., Zhang, W., Yu, H., Lu, X., Feng, J., Fan, Y., Zhu, Y., Chen, D.: An overview of the china meteorological administration tropical cyclone database. J. Atmos. Ocean. Tech. 31(2), 287–301 (2014)

    Article  Google Scholar 

  34. Lu, X., Yu, H., Ying, M., Zhao, B., Zhang, S., Lin, L., Bai, L., Wan, R.: Western north pacific tropical cyclone database created by the china meteorological administration. Adv. Atmos. Sci. 38(4), 690–699 (2021)

    Article  Google Scholar 

  35. Knapp, K.R., Kruk, M.C., Levinson, D.H., Diamond, H.J., Neumann, C.J.: The international best track archive for climate stewardship (ibtracs): unifying tropical cyclone data. Bull. Am. Meteorol. Soc. 91(3), 363–376 (2010). https://doi.org/10.1175/2009BAMS2755.1

    Article  Google Scholar 

  36. Mascarenhas, S., Agarwal, M.: A comparison between vgg16, vgg19 and resnet50 architecture frameworks for image classification. In: 2021 International Conference on Disruptive Technologies for Multi-Disciplinary Research and Applications (CENTCON), vol.1, pp. 96–99 . https://doi.org/10.1109/CENTCON52345.2021.9687944 (2021)

Download references

Acknowledgements

This work was partly supported by the National Key R &D Program of China under Grand No. 2021YFE0108400 and partly supported by the National Natural Science Foundation of China under Grant No. 62172294.

Funding

This work was partly supported by the National Key R &D Program of China under Grand No. 2021YFE0108400 and partly supported by the National Natural Science Foundation of China under Grant No. 62172294.

Author information

Authors and Affiliations

Authors

Contributions

X. T. collected data, conducted experimentation, and wrote the main manuscript text. C. B. administrated the project and provided conceptualization and methodology guidance to X. T. All authors reviewed the manuscript.

Corresponding author

Correspondence to Chongke Bi.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Research involving human participants and/or animals

Not applicable.

Informed consent

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tian, X., Bi, C., Han, J. et al. EasyRP-R-CNN: a fast cyclone detection model. Vis Comput 40, 4829–4841 (2024). https://doi.org/10.1007/s00371-024-03483-3

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00371-024-03483-3

Keywords