Abstract
This paper presents a comprehensive review of state-of-the-art motion capture techniques for digital human modeling in sports, including traditional optical motion capture systems, wearable sensor capture systems, computer vision capture systems, and fusion motion capture systems. The review explores the strengths, limitations, and applications of each technique in the context of sports science, such as performance analysis, technique optimization, injury prevention, and interactive training. The paper highlights the significance of accurate and comprehensive motion data acquisition for creating high-fidelity digital human models that can replicate an athlete’s movements and biomechanics. However, several challenges and limitations are identified, such as limited capture volume, marker occlusion, accuracy limitations, lack of diverse datasets, and computational complexity. To address these challenges, the paper emphasizes the need for collaborative efforts from researchers and practitioners across various disciplines. By bridging theory and practice and identifying application-specific challenges and solutions, this review aims to facilitate cross-disciplinary collaboration and guide future research and development efforts in harnessing the power of digital human technology for sports science advancement, ultimately unlocking new possibilities for athlete performance optimization and health.




Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.Change history
05 July 2024
A Correction to this paper has been published: https://doi.org/10.1007/s00371-024-03568-z
References
Peters, M., et al.: Biomechanical digital human models: chances and challenges to expand ergonomic evaluation. In: Ahram, T., Karwowski, W., Taiar, R. (eds.) Human Systems Engineering and Design, pp. 885–890. Springer International Publishing, Cham (2019). https://doi.org/10.1007/978-3-030-02053-8_134
Aughey, R.J., et al.: Comparison of a computer vision system against three-dimensional motion capture for tracking football movements in a stadium environment. Sports Eng. 25(1), 2 (2022). https://doi.org/10.1007/s12283-021-00365-y
Lorenz, E.A., Su, X., Skjæret-Maroni, N.: A review of combined functional neuroimaging and motion capture for motor rehabilitation. J. Neuroeng. Rehabil. 21(1), 3 (2024). https://doi.org/10.1186/s12984-023-01294-6
Das, K., de Paula Oliveira, T., Newell, J.: Comparison of markerless and marker-based motion capture systems using 95% functional limits of agreement in a linear mixed-effects modelling framework. Sci. Rep. 13(1), 22880 (2023). https://doi.org/10.1038/s41598-023-49360-2
Haratian, R.: Motion capture sensing technologies and techniques: a sensor agnostic approach to address wearability challenges. Sens Imaging 23(1), 25 (2022). https://doi.org/10.1007/s11220-022-00394-2
Lam, W.W.T., Tang, Y.M., Fong, K.N.K.: A systematic review of the applications of markerless motion capture (MMC) technology for clinical measurement in rehabilitation. J. Neuroeng. Rehabil. 20(1), 57 (2023). https://doi.org/10.1186/s12984-023-01186-9
Lin, X., Sun, S., Huang, W., Sheng, B., Li, P., Feng, D.D.: EAPT: efficient attention pyramid transformer for image processing. IEEE Trans. Multimed. 25, 50–61 (2023). https://doi.org/10.1109/TMM.2021.3120873
Armitano-Lago, C., Willoughby, D., Kiefer, A.W.: A SWOT analysis of portable and low-cost markerless motion capture systems to assess lower-limb musculoskeletal kinematics in sport. Front. Sports Act. Living 3, 809898 (2022). https://doi.org/10.3389/fspor.2021.809898
Torvinen, P., Ruotsalainen, K.S., Zhao, S., Cronin, N., Ohtonen, O., Linnamo, V.: Evaluation of 3D markerless motion capture system accuracy during skate skiing on a treadmill. Bioengineering 11(2), 136 (2024). https://doi.org/10.3390/bioengineering11020136
Sawan, N., Eltweri, A., De Lucia, C., Pio Leonardo Cavaliere, L., Faccia, A., Roxana Moşteanu, N.: Mixed and augmented reality applications in the sport industry. In: Proceedings of the 2020 2nd International Conference on E-Business and E-commerce Engineering, in EBEE ’20, pp. 55–59. Association for Computing Machinery, New York, NY, USA. (Mar. 2021). https://doi.org/10.1145/3446922.3446932
Colyer, S.L., Evans, M., Cosker, D.P., Salo, A.I.T.: A review of the evolution of vision-based motion analysis and the integration of advanced computer vision methods towards developing a markerless system. Sports Med.-Open 4(1), 24 (2018). https://doi.org/10.1186/s40798-018-0139-y
Aurand, A.M., Dufour, J.S., Marras, W.S.: Accuracy map of an optical motion capture system with 42 or 21 cameras in a large measurement volume. J. Biomech. 58, 237–240 (2017). https://doi.org/10.1016/j.jbiomech.2017.05.006
Merriaux, P., Dupuis, Y., Boutteau, R., Vasseur, P., Savatier, X.: A study of vicon system positioning performance. Sensors 17(7), 1591 (2017). https://doi.org/10.3390/s17071591
Corazza, S., Mündermann, L., Gambaretto, E., Ferrigno, G., Andriacchi, T.P.: Markerless motion capture through visual hull, articulated icp and subject specific model generation. Int. J. Comput. Vision 87(1), 156 (2009). https://doi.org/10.1007/s11263-009-0284-3
Topley, M., Richards, J.G.: A comparison of currently available optoelectronic motion capture systems. J. Biomech. 106, 109820 (2020). https://doi.org/10.1016/j.jbiomech.2020.109820
Trivedi, U., Menychtas, D., Alqasemi, R., Dubey, R.: Biomimetic approaches for human arm motion generation: literature review and future directions. Sensors 23(8), 3912 (2023). https://doi.org/10.3390/s23083912
van der Kruk, E., Reijne, M.M.: Accuracy of human motion capture systems for sport applications; state-of-the-art review. Eur. J. Sport Sci. 18(6), 806–819 (2018). https://doi.org/10.1080/17461391.2018.1463397
Nakano, N., et al.: Evaluation of 3d markerless motion capture accuracy using openpose with multiple video cameras. Front. Sports Act. Living 2, 50 (2020). https://doi.org/10.3389/fspor.2020.00050
Pagnon, D., Domalain, M., Reveret, L.: Pose2Sim: an end-to-end workflow for 3D markerless sports kinematics—part 1: robustness. Sensors 21(19), 6530 (2021). https://doi.org/10.3390/s21196530
Malus, J., et al.: Marker placement reliability and objectivity for biomechanical cohort study: healthy aging in industrial environment (HAIE—Program 4). Sensors 21(5), 1830 (2021). https://doi.org/10.3390/s21051830
Kanko, R.M., Laende, E.K., Davis, E.M., Selbie, W.S., Deluzio, K.J.: Concurrent assessment of gait kinematics using marker-based and markerless motion capture. J. Biomech. 127, 110665 (2021). https://doi.org/10.1016/j.jbiomech.2021.110665
Liu, X., et al.: Wearable devices for gait analysis in intelligent healthcare. Front. Comput. Sci. 3, 661676 (2021). https://doi.org/10.3389/fcomp.2021.661676
Benjaminse, A., Bolt, R., Gokeler, A., Otten, B.: A validity study comparing xsens with vicon. ISBS Proc. Arch. 38(1), 752 (2020)
Umek, A., Kos, A.: Validation of UWB positioning systems for player tracking in tennis. Pers. Ubiquit. Comput. 26(4), 1023–1033 (2022). https://doi.org/10.1007/s00779-020-01486-0
Wittmann, F., Lambercy, O., Gassert, R.: Magnetometer-based drift correction during rest in IMU arm motion tracking. Sensors 19(6), 1312 (2019). https://doi.org/10.3390/s19061312
Retscher, G., Gikas, V., Hofer, H., Perakis, H., Kealy, A.: Range validation of UWB and Wi-Fi for integrated indoor positioning. Appl. Geomat. 11(2), 187–195 (2019). https://doi.org/10.1007/s12518-018-00252-5
Stelzer, A., Pourvoyeur, K., Fischer, A.: Concept and application of LPM - a novel 3-D local position measurement system. IEEE Trans. Microw. Theory Tech. 52(12), 2664–2669 (2004). https://doi.org/10.1109/TMTT.2004.838281
Li, X., et al.: Accuracy and reliability of multi-GNSS real-time precise positioning: GPS, GLONASS, BeiDou, and Galileo. J. Geod. 89(6), 607–635 (2015). https://doi.org/10.1007/s00190-015-0802-8
Nguyen, K.D., Chen, I.-M., Luo, Z., Yeo, S.H., Duh, H.B.-L.: A wearable sensing system for tracking and monitoring of functional arm movement. IEEE/ASME Trans. Mechatron. 16(2), 213–220 (2011). https://doi.org/10.1109/TMECH.2009.2039222
Ates, H.C., et al.: End-to-end design of wearable sensors. Nat. Rev. Mater. 7(11), 887–907 (2022). https://doi.org/10.1038/s41578-022-00460-x
Naik, B.T., Hashmi, M.F., Bokde, N.D.: A comprehensive review of computer vision in sports: open issues, future trends and research directions. Appl. Sci. 12(9), 4429 (2022). https://doi.org/10.3390/app12094429
Sinha, A.K., Thalmann, N.M., Cai, Y.: Measuring anthropomorphism of a new humanoid hand-arm system. Int. J. Soc. Robot. 15(8), 1341–1363 (2023). https://doi.org/10.1007/s12369-023-00999-x
Manakitsa, N., Maraslidis, G.S., Moysis, L., Fragulis, G.F.: A review of machine learning and deep learning for object detection, semantic segmentation, and human action recognition in machine and robotic vision. Technologies 12(2), 15 (2024). https://doi.org/10.3390/technologies12020015
Al-Jebrni, A.H., et al.: SThy-Net: a feature fusion-enhanced dense-branched modules network for small thyroid nodule classification from ultrasound images. Vis. Comput. 39(8), 3675–3689 (2023). https://doi.org/10.1007/s00371-023-02984-x
Avogaro, A., Cunico, F., Rosenhahn, B., Setti, F.: Markerless human pose estimation for biomedical applications: a survey. Front. Comput. Sci. 5, 1153160 (2023). https://doi.org/10.3389/fcomp.2023.1153160
Zhang, Z., Zheng, J., Thalmann, N.M.: Context-aware personality estimation and emotion recognition in social interaction. Vis. Comput. (2023). https://doi.org/10.1007/s00371-023-02862-6
Toshev A., Szegedy, C.: DeepPose: Human Pose Estimation via Deep Neural Networks, p. 8. (2014)
Samkari, E., Arif, M., Alghamdi, M., Al Ghamdi, M.A.: Human pose estimation using deep learning: a systematic literature review. Mach. Learn. Knowl. Extr. 5(4), 1612–1659 (2023). https://doi.org/10.3390/make5040081
Li, Y.-C., Chang, C.-T., Cheng, C.-C., Huang, Y.-L.: Baseball swing pose estimation using openpose. In: 2021 IEEE International Conference on Robotics, Automation and Artificial Intelligence (RAAI), pp. 6–9. (Apr. 2021) https://doi.org/10.1109/RAAI52226.2021.9507807
Zhang, Z., Zheng, J., Magnenat Thalmann, N.: Engagement estimation of the elderly from wild multiparty human–robot interaction. Comput. Anim. Virtual Worlds 33(6), e2120 (2022). https://doi.org/10.1002/cav.2120
Liu, W., Bao, Q., Sun, Y., Mei, T.: Recent advances of monocular 2D and 3D human pose estimation: a deep learning perspective. ACM Comput. Surv. 55(4), 1–41 (2022). https://doi.org/10.1145/3524497
Khan, F., Salahuddin, S., Javidnia, H.: Deep learning-based monocular depth estimation methods—a state-of-the-art review. Sensors 20(8), 2272 (2020). https://doi.org/10.3390/s20082272
Toshpulatov, M., Lee, W., Lee, S., Haghighian Roudsari, A.: Human pose, hand and mesh estimation using deep learning: a survey. J. Supercomput. 78(6), 7616–7654 (2022). https://doi.org/10.1007/s11227-021-04184-7
Baumgartner, T., Paassen, B., Klatt, S.: Extracting spatial knowledge from track and field broadcasts for monocular 3D human pose estimation. Sci. Rep. 13(1), 14031 (2023). https://doi.org/10.1038/s41598-023-41142-0
Yin, L., Han, R., Feng, W., Wang, S.: Self-supervised human pose based multi-camera video synchronization. In: Proceedings of the 30th ACM International Conference on Multimedia, in MM ’22, pp. 1739–1748. Association for Computing Machinery, New York, NY, USA. (2022). https://doi.org/10.1145/3503161.3547766
Shan, W., Lu, H., Wang, S., Zhang, X., Gao, W.: Improving robustness and accuracy via relative information encoding in 3D human pose estimation. In: Proceedings of the 29th ACM International Conference on Multimedia, in MM ’21, pp. 3446–3454. Association for Computing Machinery. New York, NY, USA, (2021). https://doi.org/10.1145/3474085.3475504
Tian, L., Cheng, X., Honda, M., Ikenaga, T.: Multi-view 3D human pose reconstruction based on spatial confidence point group for jump analysis in figure skating. Complex Intell. Syst. 9(1), 865–879 (2023). https://doi.org/10.1007/s40747-022-00837-z
Pinheiro, G.D.S., Jin, X., Costa, V.T.D., Lames, M.: Body pose estimation integrated with notational analysis: a new approach to analyze penalty kicks strategy in elite football. Front. Sports Act. Living 4, 818556 (2022). https://doi.org/10.3389/fspor.2022.818556
Duan, C., Hu, B., Liu, W., Song, J.: Motion capture for sporting events based on graph convolutional neural networks and single target pose estimation algorithms. Appl. Sci. 13(13), 7611 (2023). https://doi.org/10.3390/app13137611
Xiao, L., Cao, Y., Gai, Y., Khezri, E., Liu, J., Yang, M.: Recognizing sports activities from video frames using deformable convolution and adaptive multiscale features. J. Cloud Comput. 12(1), 167 (2023). https://doi.org/10.1186/s13677-023-00552-1
Lei, Q., Du, J.-X., Zhang, H.-B., Ye, S., Chen, D.-S.: A survey of vision-based human action evaluation methods. Sensors 19(19), 4129 (2019). https://doi.org/10.3390/s19194129
Tang, W., Ren, Z., Wang, J.: Guest editorial: special issue on human pose estimation and its applications. Mach. Vis. Appl. 34(6), 120 (2023). https://doi.org/10.1007/s00138-023-01474-3
Xu, L., Luo, H., Hui, B., Chang, Z.: Real-time robust tracking for motion blur and fast motion via correlation filters. Sensors 16(9), 1443 (2016). https://doi.org/10.3390/s16091443
Hiemann, A., Kautz, T., Zottmann, T., Hlawitschka, M.: Enhancement of speed and accuracy trade-off for sports ball detection in videos—finding fast moving, small objects in real time. Sensors 21(9), 3214 (2021). https://doi.org/10.3390/s21093214
Zhuang, H., Xia, Y., Wang, N., Dong, L.: High inclusiveness and accuracy motion blur real-time gesture recognition based on YOLOv4 model combined attention mechanism and DeblurGanv2. Appl. Sci. 11(21), 9982 (2021). https://doi.org/10.3390/app11219982
Cobos, M., Ahrens, J., Kowalczyk, K., Politis, A.: An overview of machine learning and other data-based methods for spatial audio capture, processing, and reproduction. J. Audio Speech Music Proc. 2022(1), 10 (2022). https://doi.org/10.1186/s13636-022-00242-x
Gurbuz, S.Z., Rahman, M.M., Kurtoglu, E., Martelli, D.: Continuous human activity recognition and step-time variability analysis with FMCW radar. In: 2022 IEEE-EMBS International Conference on Biomedical and Health Informatics (BHI), pp. 01–04. (Sep. 2022). https://doi.org/10.1109/BHI56158.2022.9926892
Li, X., He, Y., Jing, X.: A survey of deep learning-based human activity recognition in radar. Remote Sens. 11(9), 1068 (2019). https://doi.org/10.3390/rs11091068
Sheng, B., Xiao, F., Sha, L., Sun, L.: Deep spatial-temporal model based cross-scene action recognition using commodity WiFi. IEEE Internet Things J. 7(4), 3592–3601 (2020). https://doi.org/10.1109/JIOT.2020.2973272
Liang, D., Thomaz, E.: Audio-based activities of daily living (ADL) recognition with large-scale acoustic embeddings from online videos. Proc. ACM Interact. Mob. Wearable Ubiquitous Technol. 3(1), 1–18 (2019)
Gu, Y., Zhan, J., Ji, Y., Li, J., Ren, F., Gao, S.: MoSense: An RF-based motion detection system via off-the-shelf WiFi devices. IEEE Internet Things J. 4(6), 2326–2341 (2017). https://doi.org/10.1109/JIOT.2017.2754578
Gilbert, A., Trumble, M., Malleson, C., Hilton, A., Collomosse, J.: Fusing visual and inertial sensors with semantics for 3D human pose estimation. Int. J. Comput. Vis. 127(4), 381–397 (2019). https://doi.org/10.1007/s11263-018-1118-y
Wang, L., Li, Y., Xiong, F., Zhang, W.: Gait recognition using optical motion capture: a decision fusion based method. Sensors 21(10), 3496 (2021). https://doi.org/10.3390/s21103496
Redkar, S.: A review on wearable inertial tracking based human gait analysis and control strategies of lower-limb exoskeletons. Int. Robot. & Autom. J. (2017). https://doi.org/10.15406/iratj.2017.03.00080
Shaikh, M.B., Chai, D., Islam, S.M.S., Akhtar, N.: Multimodal fusion for audio-image and video action recognition. Neural Comput. & Applic. 36(10), 5499–5513 (2024). https://doi.org/10.1007/s00521-023-09186-5
Phutane, U., et al.: Evaluation of optical and radar based motion capturing technologies for characterizing hand movement in rheumatoid arthritis—a pilot study. Sensors 21(4), 1208 (2021). https://doi.org/10.3390/s21041208
Mears, A., Roberts, J., Wallace, E., Kong, P., Forrester, S.: Comparison of two- and three-dimensional methods for analysis of trunk kinematic variables in the golf swing. J. Appl. Biomech. 32(1), 23–31 (2015). https://doi.org/10.1123/jab.2015-0032
Gurchiek, R.D., et al.: Sprint assessment using machine learning and a wearable accelerometer. J. Appl. Biomech. 35(2), 164–169 (2019). https://doi.org/10.1123/jab.2018-0107
Imsdahl, S.I., et al.: Anteroposterior translational malalignment of ankle arthrodesis alters foot biomechanics in cadaveric gait simulation. J. Orthop. Res. 38(2), 450–458 (2020). https://doi.org/10.1002/jor.24464
Willwacher, S., et al.: The habitual motion path theory: evidence from cartilage volume reductions in the knee joint after 75 minutes of running. Sci. Rep. 10(1), 1363 (2020). https://doi.org/10.1038/s41598-020-58352-5
Nasr, A., Hashemi, A., McPhee, J.: Scalable musculoskeletal model for dynamic simulations of upper body movement. Comput. Methods Biomech. Biomed. Engin. 27(3), 306–337 (2024). https://doi.org/10.1080/10255842.2023.2184747
Carabasa García, L., Lorca-Gutiérrez, R., Vicente-Mampel, J., Part-Ferrer, R., Fernández-Ehrling, N., Ferrer-Torregrosa, J.: Relationship between anterior cruciate ligament injury and subtalar pronation in female basketball players: case-control study. J. Clin. Med. 12(24), 7539 (2023). https://doi.org/10.3390/jcm12247539
Valaei Sharif, S., Habibi Moshfegh, P., Kashani, H.: Simulation modeling of operation and coordination of agencies involved in post-disaster response and recovery. Reliab. Eng. & Syst. Saf. 235, 109219 (2023). https://doi.org/10.1016/j.ress.2023.109219
Di Raimondo, G., et al.: Peak tibiofemoral contact forces estimated using IMU-based approaches are not significantly different from motion capture-based estimations in patients with knee osteoarthritis. Sensors (Basel) 23(9), 4484 (2023). https://doi.org/10.3390/s23094484
Lavikainen, J., Stenroth, L., Alkjær, T., Karjalainen, P.A., Korhonen, R.K., Mononen, M.E.: Prediction of knee joint compartmental loading maxima utilizing simple subject characteristics and neural networks. Ann. Biomed. Eng. 51(11), 2479–2489 (2023). https://doi.org/10.1007/s10439-023-03278-y
Hribernik, M., Umek, A., Tomažič, S., Kos, A.: Review of real-time biomechanical feedback systems in sport and rehabilitation. Sensors (Basel) 22(8), 3006 (2022). https://doi.org/10.3390/s22083006
Telfer, S.: Musculoskeletal Modeling of the Foot and Ankle, p. 387. (2022). https://doi.org/10.1016/B978-0-12-815449-6.00021-4
Su, B., Gutierrez-Farewik, E.M.: Simulating human walking: a model-based reinforcement learning approach with musculoskeletal modelling. Front. Neurorobot. 17, (2023). https://doi.org/10.3389/fnbot.2023.1244417
Mathieu, E., Crémoux, S., Duvivier, D., Amarantini, D., Pudlo, P.: Biomechanical modeling for the estimation of muscle forces: toward a common language in biomechanics, medical engineering, and neurosciences. J. NeuroEng. Rehabil. 20(1), 130 (2023). https://doi.org/10.1186/s12984-023-01253-1
Seth, A., et al.: OpenSim: simulating musculoskeletal dynamics and neuromuscular control to study human and animal movement. PLoS Comput. Biol. 14(7), e1006223 (2018). https://doi.org/10.1371/journal.pcbi.1006223
McClintock, F.A., Callaway, A.J., Clark, C.J., Williams, J.M.: Validity and reliability of inertial measurement units used to measure motion of the lumbar spine: a systematic review of individuals with and without low back pain. Med. Eng. Phys. 126, 104146 (2024). https://doi.org/10.1016/j.medengphy.2024.104146
Morais, J.E., Oliveira, J.P., Sampaio, T., Barbosa, T.M.: Wearables in swimming for real-time feedback: a systematic review. Sensors 22(10), 3677 (2022). https://doi.org/10.3390/s22103677
Hohmuth, R., Schwensow, D., Malberg, H., Schmidt, M.: A wireless rowing measurement system for improving the rowing performance of athletes. Sensors 23(3), 1060 (2023). https://doi.org/10.3390/s23031060
Stančin, S., Tomažič, S.: Early improper motion detection in golf swings using wearable motion sensors: the first approach. Sensors 13(6), 7505–7521 (2013). https://doi.org/10.3390/s130607505
Goebert, C.: Augmented reality in sport marketing: uses and directions. Sports Innov. J. 1, 134–151 (2020). https://doi.org/10.18060/24227
Li, H.: Research on basketball sports training based on virtual reality technology. J. Phys. Conf. Ser. 1992, 032047 (2021). https://doi.org/10.1088/1742-6596/1992/3/032047
Kim, A., Kim, S.-S.: Engaging in sports via the metaverse? An examination through analysis of metaverse research trends in sports. Data Sci. Manag. (2024). https://doi.org/10.1016/j.dsm.2024.01.002
Marshall, B., Uiga, L., Parr, J.V.V., Wood, G.: A preliminary investigation into the efficacy of training soccer heading in immersive virtual reality. Virtual Real. 27(3), 2397–2404 (2023). https://doi.org/10.1007/s10055-023-00807-x
He, Q., et al.: From digital human modeling to human digital twin: framework and perspectives in human factors. Chin. J. Mech. Eng. 37(1), 9 (2024). https://doi.org/10.1186/s10033-024-00998-7
Roupa, I., da Silva, M.R., Marques, F., Gonçalves, S.B., Flores, P., da Silva, M.T.: On the modeling of biomechanical systems for human movement analysis: a narrative review. Arch. Computat. Methods Eng. 29(7), 4915–4958 (2022). https://doi.org/10.1007/s11831-022-09757-0
Reinschmidt, C., van den Bogert, A.J., Nigg, B.M., Lundberg, A., Murphy, N.: Effect of skin movement on the analysis of skeletal knee joint motion during running. J. Biomech. 30(7), 729–732 (1997). https://doi.org/10.1016/s0021-9290(97)00001-8
Ren, L., Howard, D., Ren, L., Nester, C., Tian, L.: A generic analytical foot rollover model for predicting translational ankle kinematics in gait simulation studies. J. Biomech. 43(2), 194–202 (2010). https://doi.org/10.1016/j.jbiomech.2009.09.027
Veloso, A., Esteves, G., Silva, S., Ferreira, C., Brandão, F.: Biomechanics modeling of human musculoskeleial system using adams multibody dynamics package. 2006, 401–407 (2006)
Chao, E.Y., Armiger, R.S., Yoshida, H., Lim, J., Haraguchi, N.: Virtual interactive musculoskeletal system (VIMS) in orthopaedic research, education and clinical patient care. J. Orthop. Surg. Res. 2(1), 2 (2007). https://doi.org/10.1186/1749-799X-2-2
He, K., Zuo, C., Shao, J., Sui, Y.: Self model for embodied intelligence: modeling full-body human musculoskeletal system and locomotion control with hierarchical low-dimensional representation. arXiv. (Dec. 09, 2023). https://doi.org/10.48550/arXiv.2312.05473
Koga, H., et al.: Mechanisms for noncontact anterior cruciate ligament injuries knee joint kinematics in 10 injury situations from female team handball and basketball. Am. J. Sports Med. 38, 2218–2225 (2010). https://doi.org/10.1177/0363546510373570
Yang, J., Meng, C., Ling, L.: Prediction and simulation of wearable sensor devices for sports injury prevention based on BP neural network. Meas.: Sens. 33, 101104 (2024). https://doi.org/10.1016/j.measen.2024.101104
Strojny, P., Dużmańska-Misiarczyk, N.: Measuring the effectiveness of virtual training: a systematic review. Comput. & Educ.: X Real. 2, 100006 (2023). https://doi.org/10.1016/j.cexr.2022.100006
Nozawa, T., Wu, E., Koike, H.: VR ski coach: indoor ski training system visualizing difference from leading skier. In: 2019 IEEE Conference on Virtual Reality and 3D User Interfaces (VR), pp. 1341–1342. IEEE, Osaka, Japan. (Mar. 2019). https://doi.org/10.1109/VR.2019.8797717
Okada, Y., et al.: Virtual ski training system that allows beginners to acquire ski skills based on physical and visual feedbacks, pp. 1268–1275. (Oct. 2023). https://doi.org/10.1109/IROS55552.2023.10342020
Chatzopoulos, D., Bermejo, C., Huang, Z., Hui, P.: Mobile augmented reality survey: from where we are to where we go. IEEE Access 5, 6917–6950 (2017). https://doi.org/10.1109/ACCESS.2017.2698164
Musse, S.R., Thalmann, D.: Hierarchical model for real time simulation of virtual human crowds. IEEE Trans. Visual Comput. Gr. 7(2), 152–164 (2001). https://doi.org/10.1109/2945.928167
Capasa, L., Zulauf, K., Wagner, R.: Virtual reality experience of mega sports events: a technology acceptance study. J. Theor. Appl. Electron. Commer. Res. 17(2), 686–703 (2022). https://doi.org/10.3390/jtaer17020036
Bulearca, M., Tamarjan, D.: Augmented reality: a sustainable marketing tool? Glob. Bus. Manag. Res. 2, 237–252 (2010)
Tanier, M.: Future of the NFL: the virtual, augmented, 3D, 360-degree football experience. Bleach. Rep. Accessed: Mar. 14, 2024. [Online]. Available: https://bleacherreport.com/articles/2659861-future-of-the-nfl-the-virtual-augmented-3d-360-degree-football-experience
Shimizu, K., Sugawara, K.: Validation of potential reference measure for indoor walking distance to evaluate wearable sensing devices. In: 2021 43rd Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC), pp. 7178–7181. (Nov. 2021). https://doi.org/10.1109/EMBC46164.2021.9629854
Tretschk, E., et al.: State of the art in dense monocular non-rigid 3D reconstruction. Comput. Gr. Forum 42(2), 485–520 (2023). https://doi.org/10.1111/cgf.14774
Qian, B., et al.: DRAC 2022: a public benchmark for diabetic retinopathy analysis on ultra-wide optical coherence tomography angiography images. Patterns, p. 100929. (Feb. 2024). https://doi.org/10.1016/j.patter.2024.100929
Lugrís, U., Pérez-Soto, M., Michaud, F., Cuadrado, J.: Human motion capture, reconstruction, and musculoskeletal analysis in real time. Multibody Syst. Dyn. 60(1), 3–25 (2024). https://doi.org/10.1007/s11044-023-09938-0
Desmarais, Y., Mottet, D., Slangen, P., Montesinos, P.: A review of 3D human pose estimation algorithms for markerless motion capture. arXiv. (Jul. 12, 2021). Accessed: May 17, 2022. [Online]. Available: http://arxiv.org/abs/2010.06449
Karambakhsh, A., et al.: SparseVoxNet: 3-D object recognition with sparsely aggregation of 3-D dense blocks. IEEE Trans. Neural Netw. Learn. Syst. 35(1), 532–546 (2024). https://doi.org/10.1109/TNNLS.2022.3175775
Hu, P., Ho, E.S., Munteanu, A.: 3DBodyNet: fast reconstruction of 3D animatable human body shape from a single commodity depth camera. IEEE Trans. Multimedia 24, 2139–2149 (2022). https://doi.org/10.1109/TMM.2021.3076340
Aouaidjia, K., Sheng, B., Li, P., Kim, J., Feng, D.D.: Efficient body motion quantification and similarity evaluation using 3-D joints skeleton coordinates. IEEE Trans. Syst. Man Cybern.: Syst. 51(5), 2774–2788 (2021). https://doi.org/10.1109/TSMC.2019.2916896
Loper, M., Mahmood, N., Romero, J., Pons-Moll, G., Black, M.J.: SMPL: a skinned multi-person linear model. In: Seminal Graphics Papers: Pushing the Boundaries, 1st ed., Volume 2, pp. 851–866. Association for Computing Machinery, New York, NY, USA. (2023). Accessed: Mar. 14, 2024. [Online]. Available: https://doi.org/10.1145/3596711.3596800
Urtasun, R., Glardon, P., Boulic, R., Thalmann, D., Fua, P.: Style-based motion synthesis†. Comput. Gr. Forum 23(4), 799–812 (2004). https://doi.org/10.1111/j.1467-8659.2004.00809.x
Joo, H., Simon, T., Sheikh, Y.: Total capture: a 3D deformation model for tracking faces, hands, and bodies. arXiv, (Jan. 04, 2018). https://doi.org/10.48550/arXiv.1801.01615
Debevec, P., Hawkins, T., Tchou, C., Duiker, H.-P., Sarokin, W., Sagar, M.: Acquiring the reflectance field of a human face. In: Proceedings of the 27th annual conference on Computer graphics and interactive techniques, in SIGGRAPH ’00, pp. 145–156. ACM Press/Addison-Wesley Publishing Co., USA. (Jul. 2000). https://doi.org/10.1145/344779.344855
Liang, H., Yuan, J., Thalmann, D.: Parsing the hand in depth images. IEEE Trans. Multimed. 16(5), 1241–1253 (2014). https://doi.org/10.1109/TMM.2014.2306177
Nazir, A., Cheema, M.N., Sheng, B., Li, P., Kim, J., Lee, T.-Y.: Living donor-recipient pair matching for liver transplant via ternary tree representation with cascade incremental learning. IEEE Trans. Biomed. Eng. 68(8), 2540–2551 (2021). https://doi.org/10.1109/TBME.2021.3050310
Alldieck, T., Magnor, M., Xu, W., Theobalt, C., Pons-Moll, G.: Detailed human avatars from monocular video. arXiv, (Aug. 03, 2018). https://doi.org/10.48550/arXiv.1808.01338
Zhu, H., Zuo, X., Wang, S., Cao, X., Yang, R.: Detailed human shape estimation from a single image by hierarchical mesh deformation. arXiv, (May 08, 2019). https://doi.org/10.48550/arXiv.1904.10506
Pons-Moll, G., Romero, J., Mahmood, N., Black, M.J.: Dyna: a model of dynamic human shape in motion. ACM Trans. Gr. 34(4), 1–14 (2015). https://doi.org/10.1145/2766993
Huang, S., et al.: TransMRSR: transformer-based self-distilled generative prior for brain MRI super-resolution. arXiv. (Jun. 11, 2023). https://doi.org/10.48550/arXiv.2306.06669
Vlasic, D., et al.: Dynamic shape capture using multi-view photometric stereo. In: ACM SIGGRAPH Asia 2009 papers, in SIGGRAPH Asia ’09, pp. 1–11. Association for Computing Machinery. New York, NY, USA. (2009). https://doi.org/10.1145/1661412.1618520
Xie, K., Wang, T., Iqbal, U., Guo, Y., Fidler, S., Shkurti, F.: Physics-based human motion estimation and synthesis from videos. arXiv, (Aug. 11, 2022). https://doi.org/10.48550/arXiv.2109.09913
Habermann, M., Xu, W., Rhodin, H., Zollhoefer, M., Pons-Moll, G., Theobalt, C.: NRST: non-rigid surface tracking from monocular video. arXiv, (Jul. 12, 2021). https://doi.org/10.48550/arXiv.2107.02407
Pueo, B., Jimenez-Olmedo, J.M.: Application of motion capture technology for sport performance analysis (El uso de la tecnología de captura de movimiento para el análisis del rendimiento deportivo). Retos 32, 241–247 (2017). https://doi.org/10.47197/retos.v0i32.56072
Tonkin, E.L., et al.: A multi-sensor dataset with annotated activities of daily living recorded in a residential setting. Sci. Data 10(1), 162 (2023). https://doi.org/10.1038/s41597-023-02017-1
Abdel-Malek, K., et al.: Digital human method and simulation for predicting musculoskeletal injuries. (Jun. 2016)
Naumann, A., Roetting, M.: Digital human modeling for design and evaluation of human-machine systems. MMI Interaktiv. (Jan. 2007)
Thewlis, D., Bishop, C., Daniell, N., Paul, G.: Next-generation low-cost motion capture systems can provide comparable spatial accuracy to high-end systems. J. Appl. Biomech. 29, 112–117 (2012). https://doi.org/10.1123/jab.29.1.112
Funding
National Natural Science Foundation of China (grant number: 62077037) and Research and Innovation Grant for Graduate Students, Shanghai University of Sport (Project Number: YJSCX-2023-034).
Author information
Authors and Affiliations
Contributions
X.S. and W.T. wrote the main manuscript text and prepared the figures and tables. Z.L. and L.M. contributed to supervision and project administration. All authors reviewed the manuscript.
Corresponding author
Ethics declarations
Conflict of interests
The authors declare no competing interests.
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
The original online version of this article was revised: the funding section was missing.
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Suo, X., Tang, W., Mao, L. et al. Digital human and embodied intelligence for sports science: advancements, opportunities and prospects. Vis Comput 41, 2477–2493 (2025). https://doi.org/10.1007/s00371-024-03547-4
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00371-024-03547-4