On a spanning tree with specified leaves
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Abstract

Let k > 2 be an integer. We show that if G is a (k + 1)-connected graph and
each pair of nonadjacent vertices in G has degree sum at least |G| + 1, then for
each subset S of V(G) with |S| = k, G has a spanning tree such that S is the set of
endvertices. This result generalizes Ore’s theorem which guarantees the existence
of a Hamilton path connecting any two vertices.
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1 Introduction

Many results concerning conditions for the existence of a Hamilton path are known. We
can regard a Hamilton path as a spanning tree with precisely two endvertices. Thus
it is natural to look for conditions which ensure the existence of a spanning tree with
the bounded number of endvertices or with a specified set of endvertices. This paper is
mainly concerned with sufficient conditions for a graph to have a spannning tree with a
specified set of endvertices.

We consider finite undirected graphs without loops nor multiple edges. Let G be a
graph with vertex set V(G) and edge set E(G). The order of G is denoted by |G|. For
a vertex © € V(G), we denote the degree of x in G by dg(x) and the set of vertices
adjacent to x in G by Ng(z); thus dg(z) = |Ng(x)|. For a subset S C V(G), let
Nea(S) = Ues Na(), and let G — S denote the subgraph induced by V(G)\ S. A leaf
(or an endvertex) of a tree is a vertex of degree one, and a branch vertez of a tree is a
vertex of degree strictly greater than two. For a tree T, let

L(T)={x e V(T) | xis aleaf of T'} and
B(T) ={x € V(T) | « is a branch vertex of T'}.

A graph G said to be k-leaf-connected if |G| > k and for each subset S of V(G) with
|S| = k, G has a spanning tree T' with L(T) = S.

We prove the following theorem, which gives an Ore-type condition for a graph to
be k-leaf-connected.

Theorem 1 Let k > 2 be an integer. Let G be a (k + 1)-connected graph and suppose
that dg(z) + dg(y) > |G|+ 1 for any two nonajacent vertices x,y € V(G). Then G is
k-leaf-connected.

Theorem 1 is best possible in the following sense:

e We cannot replace the lower bound |G| + 1 in the degree condition by |G]|.

Consider the complete bipartite graph G with partite sets A and B such that
|A| = |B| = t, where t is an integer with t > k + 1. Then G is (k + 1)-connected,
|G| = 2t, and dg(x) + dg(y) = |G| for any two nonadjacent vertices = and y of
V(G). Suppose that G is k-leaf-connected. Then G has a spanning tree T with
L(T) C B. Consequently dr(z) > 2 for all € A, and thus |E(T)| > 2|A| = 2t.
However, this contradicts the fact |E(T)| = |G| — 1 < 2t. Hence G is not k-leaf-
connected.

e For k > 3, the condition that G is (k + 1)-connected is necessary.

Assume that £ > 3. Let » > 1 be an integer and consider the graph G :=
Ky + (K1 UK,). Then G is k-connected but not (k + 1)-connected, and for two
vertices x € V(K,) and y € V(K7), we have dg(x)+da(y) = (|G|-2)+k > |G|+1.
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However, G has no spanning tree 7' with L(T) = V(K}). (For the case where k = 2,
see Theorem 3 below and the first sentence in the paragraph following Theorem
3.)

As for the proof, we prove the following result, which is stronger than Theorem 1.

Theorem 2 Let G be a graph, and let S be a subset of V(G) such that |S| > 2, |[N(S)\
S| > 2, G— S is connected and Ng(v) \ S # O for all v € S. Suppose further that
dg(z) + dg(y) > |G|+ 1 for any two nonajacent vertices x,y € V(G)\ S. Then G has
a spanning tree T with L(T) = S.

As in the case of Theorem 1, balanced complete bipartite graphs show that the lower
bound in the degree condition in Theorem 2 is also sharp.

The following two results motivate our results. Since G has a Hamilton path con-
necting any two vertices if and only if it is 2-leaf-connected, Theorem 1 is a natural
extension of the following famous result.

Theorem 3 (Ore [2]) Let G be a graph. If dg(z)+de(y) > |G|+ 1 for every two non-
ajacent vertices x,y € V(G), then G has a Hamilton path connecting any two vertices.

Note that if dg(z)+de(y) > |G|+k—1 for every two nonajacent vertices z,y € V(G)
then G is (k+1)-connected. Thus the following result also follows from Theorem 1 (in [1],
this result is derived from the assertion that the property of being k-leaf-connected
is stable under a closure operation of Bondy-Chvéatal type, i.e., if z,y € V(G) are
nonadjacent vertices with dg(x) +dg(y) > |G| +k —1, then G is k-leaf-connected if and
only if G + zy is k-leaf-connected; see [1; Theorem 4]).

Theorem 4 (Gurgel and Wakabayashi [1; Corollary 6.1]) Let G be a graph, and
suppose that dg(x) + da(y) > |G| + k — 1 for every two nonajacent vertices x,y of G.
Then G is k-leaf-connected.

2 Proof of Theorem 2

Let G and S be as in Theorem 2. Since Ng(v) \ S # 0 for each v € S, and G — S is
connected, G has a tree T with L(T) = S and V(T) \ S # (. Choose such a tree T
so that |T| is as large as possible. If V(G) = V(T), then we have nothing to prove.
Thus we may assume that G — V(T') # 0. Let H be a component of G — V(T') and set
X = Ng(H)NV(T). Note that X \ S # 0 because V(T')\ S # 0 and G — S is connected.

We assume that we have chosen H such that | X]| is as large as possible. We derive
the proof into two cases according to the value of | X|.

Case 1. |X|=1.
Set X = {xq}. Since (Ng(H")NV(T))\S # 0 for every component H' of G-V (T), it
follows from our choice of H that Ng(G —V(T))NS = ), which implies Ng(S) C V(T).
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Since |Ng(S) \ S| > 2 by the assumption of the theorem, we can take vy € V(T) \
(SU{zo}). Now take ug € V(H). By the assumption of Case 1, Ng(vg) N Ng(ug) C
{zo}. Since voug ¢ E(G), we also have Ng(vg) U Ng(ug) C V(G) \ {vo,uo}. Hence
da(vg) + dg(up) < |G| —2+4 1 = |G| — 1, which contradicts the degree condition of the
theorem. This completes the proof for Case 1.

Case 2. |X]|>2.
By the maximality of T, we obtain the following fact.

Fact 1 X is an indepedent set in T.

We denote by Pr(a,b) the unique path in 7' connecting two vertices a and b of T.
We choose x1 € X\ S and x5 € X \ {x1} so that |Pr(x,z5)| is as small as possible. By
Fact 1, 2129 € E(T). We regard T as an outdirected tree with root zy. For U C V(T),
define U* = {J,cp (Nr(uw) \ V(Pr(z1,u))) and U™ = oy (Np(w) NV (Pr(z1,u))). For
a vertex u € V(T')\ {1}, having in mind the fact that [{u}~| = 1, we let v~ denote the
unique vertex in {u}~. Recall that B(T") denotes the set of branch vertices of T

Claim 2 B(T) " n X = 0.

Proof. Suppose that x € B(T)" N X. Let 2’ € Ng(z) NV (H) and ', € Ng(z,) NV (H),
and let () be a path in H connecting 2’ and 2. Then 7" := (T — zz~ + z2’ + z127) UQ
is a tree with L(T") = S and |T'| > |T'|. This contradicts the maximality of 7. Hence
BT)"'nX =00

Set W = B(T) U{x}. Choose y; € (V(Pr(xy,22)) N W)\ {2} so that |Pr(y;, xs)]
is as small as possible (possibly y; = x1). By Claim 2, y;xo ¢ E(T'). Write Np(y;) N
V(Pr(y1,22)) = {vi} and Np(x9) NV (Pr(y1,x2)) = {va} (possibly v; = vy). Write
Nr(x1) NV (Pr(x1,22)) = {wi} and define T* = T — V(Pr(wy,v2)). We denote by
Py, Py, ..., P, the components of T* —{uv € E(T) | u € W,v € {u}T}. We may assume
that V(P;) = {x1} and x5 € V(F,). Note that P; is a path for every i = 1,... ;m and
|[V(P)NWT| =1foreachi=3,... ,m. Write V(P,)NW™* = {q;} foreachi =3,... ,m.
Then for each 7, a; is an endvertex of P;.

For j =1,2, let u; € Ng(x;) NV (H) (possibly uy = us).

Claim 3 |Ng(uy) N V(T*)| + [Ne(us) 0 V(T#)| < [T + 2.

Proof. Since |Pi| = |[{z1}| =1, |Ng(u1) NV (P)| + |Ng(u2) NV (P)| <2 = |P| + 1.
By Fact 1, (Ng(u1) NV (P;))” N (Ng(ug) NV (P;)) = () for every 2 < i < m. For the
path Py, we have |Ng(u1) N V(P)| = |(Ng(u1) N V(P,))"| and (Ng(uy) NV (FP))~ U
(Ng(uz) NV (Py)) € V(Py) U {ve}. Hence |Ng(ui) NV (P)| + |Ng(uz) N V(P)| =
|(Ng(u)NV (P))~ |4+ | Na(u2) NV (Py)| < |Py|+1. Let now 3 < i < m. Then a; € Ng(uq)
by Fact 1 or Claim 2 according as a; € {21} or a; € B(T)". Since u~ € V(P;) for all
u € V(P;) \ {a;}, this implies (Ng(u1) NV (P;))~ U (Ng(u2) NV (P;)) C V(F;). Since
[(No(un) V()| = |No(u) V(P we obtain [Ng(un)V (B + | No(u) 1V (B <
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|(Ne(u1) N V()| + [Na(uz) N V(E)| < [P Thus [(Na(ui) 0 V(E))| + [Ne(uz) 0
V(P)| < |P;| for every 3 < i < m. Consequently

m

[N (ur) N V(T + [Ne(uz) N V(T = Y (INa(u) N V(B)] + [Ne(uz) 0V (B)])

i=1

<|P+1+|P+1+ ) |P)
=3
= |T"| + 2.

Hence the claim holds. [J
Let R be a path in H connecting u; and .

Claim 4 |Ng(v1) N V(T)| + [Ne(v2) 0 V(TH)| < |T*| + 2.

Proof. Note that |[Ng(vi) N V(P)| + |Ng(v2) NV(P)| <2 = |P| + 1. Note also that
(Ng(v1) NV(P)) U (Ng(va) NV (P))” C V(P) U{ve}. We now show a; ¢ Ng(vs)

for every i = 3,... ,m. Suppose that a; € Ng(ve) for some j with 3 < j < m. Then
T":= (T — aja; —vay + a;vy +T1u; +Toup) U R is a tree with L(T") = S and [T"] > |T|.
But this contradicts the maximality of 7. Hence a; € Ng(vy) for every i = 3,... ,m.

Consequently, (Ng(v1) NV (F;)) U (Ng(v2) NV (F;))” C V(P;) for each i = 3,... ,m.

Next, suppose that (N (v1) NV (P;))N(Ne(v2) NV (P;))~ # 0 for some j with 2 < j <
m. Then there exists v € V(P;) such that v € Ng(ve) NV (P;) and v~ € Ng(v1) NV (F).
But then 7" := (T—vv™ —v1y1 — U2 +vo0+010~ +21U1+T2us )UR is a tree with L(T") = S
and |T"| > |T'|, which is a contradiction. Hence (Ng(v1)NV (P;))N(Ng(va) NV (P;))™ =0
for each 1 =2,... ,m.

Since |(Ng(v2) N V(F;))"| = |Ng(ve) N V(F)| for every 2 < ¢ < m, we obtain
INa(u) VV(Py)|+ [ Na(e) 0V (By)] < [Pyl +1 and [Na(or) AV (B)] + [ Na(o2) V()| <
| P;| for every 3 < i < m. Therefore |Ng(v)) NV (T*)| 4+ |Ng(ve) NV (T™)| < |T* +2. O

Now let j € {1,2}. By the minimality of |Pr(z1,z2)|, we have u;v; ¢ E(G). Note
that u;,v; € S because u; & V(T) and v; € V(Pr(z1,x2))\ {21, z2}. Thus by the degree
condition, dg(u;) 4+ dg(vj) > |G|+ 1. Furthermore, by the choice of 1 and x5, Ng(v;) N
V(H) = 0 and Ng(u;) NV (Pr(wy,ve)) = 0. Since we clearly have Ng(uj;) N (V(G) \
(V(T)UV(H))) =0, Ng(uj) NV (H) C V(H) \ {u;} and Ng(vj) NV (Pr(wy,ws)) C
V(Pr(wi,v2)) \ {v;}, this implies

[Na(ug) 0 (V(G) \ V(T™))| + [Na(v) 0 (V(G)\ V(T7))]
<|G— (V(T)UV(H))| + (|H| = 1) + (|Pr(w,vs)| — 1) = |G| — |T"| — 2.

Consequently

[Ne(ug) OV(T?)| + [Ne(v;) N V(T 2 |Gl + 1= (1G] = [T7] = 2) = [T"] + 3.



Thus |Ng(u;) N V(T™)| + |Na(v;) N V(T*)| > |T*| + 3 for each j = 1,2. This implies
that we have |Ng(ui) N V(T*)| + [Ng(uz) N V(T*)| > |T*| 4+ 3 or |Ng(vi) N V(T*)| +
|Ng(ve) NV (T*)| > |T*| + 3, which contradicts Claim 3 or 4.

This completes the proof of Theorem 2. [

3 Application

As a consequence of Theorem 1, we prove the following result, which gurantees the exis-
tence of a spanning tree having the bounded number of leaves and containing specified
vertices as leaves.

Corollary 5 Let k and s be integers with k > 2 and 0 < s < k. Suppose that G is an
(s + 1)-connected graph, and for any two nonadjacent vertices x,y € V(QG),

da(z) +da(y) > |G| =k +1+s.

Then for any subset S C V(G) with |S| = s, G has a spanning tree T' such that S C L(T)
and |L(T)| < k.

Proof. Construct a new graph H by joining two graphs G and Kj_,. Then H satisfies
the conditions of Theorem 1, and hence H has a spanning tree 7" such that L(T) =
SUV(Kj—s). Thus T — V(Kj_s) is a spanning tree of G with the desired properties. [J

In Corollary 5, the lower bound in the degree condition is sharp. For example, let
G be a complete bipartite graph with partite sets A and B such that |A| = ¢ + k
and |B| = t + s, where t > 1. Then G is (s + 1)-connected, |G| = 2t + k + s, and
da(z)+de(y) > 2|B| = 2t+2s = |G|—k+s for any two nonadjacent vertices z and y of G.
Suppose that G has a spanning tree T" such that |L(T")| < k and s specified vertices in B
are contained in L(7"). Then the number of edges in T is at least 2| A|—(k—s) = 2t+k+s.
However, this is a contradiction because 2t + k + s > |G| — 1 = |E(T)|. Thus G has no
desired spanning tree.

Moreover, for k > 3 and s > 1, the condition that G is (s+1)-connected is necessary.
Assume that £ > 3. Let » > 1, and consider the graph G := K, + (K; U K,.). Then G
is s-connected but not (s + 1)-connected. For z € V(K) and any y € V(K,), we have
dg(z) +dg(y) = (|G| —2) + s > |G| — k+ 1+ s. However, G has no spanning tree T
with V/(K) C L(T).
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