Skip to main content
Log in

Upper Embeddability, Girth and the Degree-Sum of Nonadjacent Vertices

  • Published:
Graphs and Combinatorics Aims and scope Submit manuscript

Abstract

Let G be a 2-edge-connected simple graph with girth g, independence number α(G), and if one of the following two conditions holds

  1. (1)

    α(G) ≤ 2;

  2. (2)

    α(G) ≥ 3, and for any three nonadjacent vertices v i  (i = 1,2,3), it has

    $$\sum\limits_{i=1}^{3}d_{G}(v_i) \geq \nu - 3g +7$$

    ,

then G is upper embeddable and the lower bound v − 3g + 7 is best possible. Similarly the result for 3-edge-connected simple graph with girth g and independence number α(G) is also obtained.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bondy, J. A., Murty, U. S. R.: Graph theory with applications, Macmillan, London (1976)

  2. Nordhaus, E. A., Stewart, B. M., White, A.T.: On the maximum genus of a graph. J. Combin. Theory 11, 258–267 (1971)

    Google Scholar 

  3. Kunda, S.: Bounds on number of disjoint spanning trees. J. Combin. Theory 17B, 199–203 (1974)

    Google Scholar 

  4. Payan, C., and Xoung, N. H.: Upper embeddability and conncetivity of graph. Discrete Math., J 27, 71–80 (1979)

    Google Scholar 

  5. Nebesky, L.: Every connected, locally connected graph is upper embeddable. J. Graph Theory 3, 197–199 (1981)

    Google Scholar 

  6. Nebesky, L.: On quasiconnected graph and their upper embeddable. Czech. Math. J., 35, 110 (1985)

    Google Scholar 

  7. Skobiera, M., Nedela, R.: The maximum genus of a graph and doubly Eulerian trail. Bulletin. U.M.I., 4B, 541–545 (1990)

    Google Scholar 

  8. Jaeger, F., Payan, C., Xuong, N. H.: A class of upper embeddable graphs. J. Graph Theory 3, 387–391 (1979)

    Google Scholar 

  9. Skoviera, M.: On the maximum of graphs of diameter two. Discrete Math 87, 175–180 (1991)

    Google Scholar 

  10. Nedela, R., Skoviera, M.: Topics in combinatorics and graph theory, R. Bodendiek and R. Henn (Eds), Phusicaverlay, Heideberg, 519–525 (1990)

  11. Nebesky, L.: N 2-connected graph and their upper embeddability, Czech. Math. J 41, 116 (1991)

    Google Scholar 

  12. Jungerman, M.: A Characterization of upper embeddable graphs, Trans. Amer. Math. Soc., 241, 401–406 (1978)

    Google Scholar 

  13. Huang, Y. Q., Liu, Y. P.: The degree-sum of nonadjcent vertices and upper embeddability of graphs. Chin Ann of Math. 19A(5), 651–656 (1998) (in Chinese)

    Google Scholar 

  14. Chen, Y.C., Liu, Y.P.: The degree-sum of nonadacent vertices, girth and upembeddability, Graphs and Combinatorics 23, 521–527 (2007)

    Google Scholar 

  15. Xuong, N. H.: How to determine the maximum genus of a graph. J. Combinatorial Theory 26B, 217–225 (1979)

    Google Scholar 

  16. Liu, Y. P.: Embeddability in graphs. Klumer Science, London (1995)

  17. Nebesky L.: A new characterization of the maximum genus of a graph, Czech. Math.J., 31(106), 604–613 (1981)

    Google Scholar 

  18. Huang, Y. Q., Liu, Y. P.: Maximum genus and chromatic number of graphs. Discrete Math. 271, 117–127 (2003)

    Google Scholar 

  19. Chen, Y. C., Liu, Y. P.: Maximum genus, girth and maximum nonadjacent edge set. Ars Combinatoria 79, 145–159 (2006)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ouyang Zhangdong.

Additional information

Huang Yuanqiu: Partially supported by National Science Foundation of China (No. 10771062) and Program for New Century Excellent Talents in University (No. NCET-07-0276).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhangdong, O., Jing, W. & Yuanqiu, H. Upper Embeddability, Girth and the Degree-Sum of Nonadjacent Vertices. Graphs and Combinatorics 25, 253–264 (2009). https://doi.org/10.1007/s00373-008-0837-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00373-008-0837-1

Keywords