Skip to main content
Log in

Restrained Domination in Claw-Free Graphs with Minimum Degree at Least Two

  • Original Paper
  • Published:
Graphs and Combinatorics Aims and scope Submit manuscript

Abstract

Let G = (V, E) be a graph. A set \({S\subseteq V}\) is a restrained dominating set if every vertex in VS is adjacent to a vertex in S and to a vertex in VS. The restrained domination number of G, denoted γ r (G), is the smallest cardinality of a restrained dominating set of G. We will show that if G is claw-free with minimum degree at least two and \({G\notin \{C_{4},C_{5},C_{7},C_{8},C_{11},C_{14},C_{17}\}}\) , then \({\gamma_{r}(G)\leq \frac{2n}{5}.}\)

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Chen X.G., Ma D.X., Sun L.: On total restrained domination in graphs. Czechoslovak Math. J. 55(1), 165–173 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  2. Dankelmann P., Day D., Hattingh J.H., Henning M.A., Markus L.R., Swart H.C.: On equality in an upper bound for the restrained and total domination numbers of a graph. Discret. Math. 307, 2845–2852 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  3. Dankelmann P., Hattingh J.H., Henning M.A., Swart H.C.: Trees with equal domination and restrained domination numbers. J. Glob. Optim. 34, 597–607 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  4. Domke G.S., Hattingh J.H., Hedetniemi S.T., Markus L.R.: Restrained domination in trees. Discret. Math. 211, 1–9 (2000)

    Article  MATH  Google Scholar 

  5. Domke G.S., Hattingh J.H., Hedetniemi S.T., Laskar R.C., Markus L.R.: Restrained domination in graphs. Discret. Math. 203, 61–69 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  6. Domke G.S., Hattingh J.H., Henning M.A., Markus L.R.: Restrained domination in graphs with minimum degree two. J. Combin. Math. Combin. Comput. 35, 239–254 (2000)

    MATH  MathSciNet  Google Scholar 

  7. Hattingh J.H., Henning M.A.: Restrained domination excellent trees. Ars Combin. 87, 337–351 (2008)

    MathSciNet  Google Scholar 

  8. Hattingh, J.H., Jonck, E., Joubert, E.J.: An upper bound for the total restrained domination number of a tree. J. Combin. Optim. (to appear)

  9. Hattingh J.H., Jonck E., Joubert E.J., Plummer A.R.: Nordhaus-Gaddum results for restrained domination and total restrained domination in graphs. Discret. Math. 308, 1080–1087 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  10. Hattingh J.H., Joubert E.J.: An upper bound for the restrained domination number of a graph with minimum degree at least two in terms of order and minimum degree. Discret. Appl. Math. 157, 2846–2858 (2009)

    Article  MathSciNet  Google Scholar 

  11. Hattingh, J.H., Plummer, A.R.: A note on restrained domination in trees. Ars Combin. (to appear)

  12. Haynes T.W., Hedetniemi S.T., Slater P.J.: Fundamentals of Domination in Graphs. Marcel Dekker, New York (1997)

    Google Scholar 

  13. Haynes, T.W., Hedetniemi, S.T., Slater, P.J. (eds): Domination in Graphs: Advanced Topics. Marcel Dekker, New York (1997)

    Google Scholar 

  14. Henning M.A.: Graphs with large restrained domination number. Discret. Math. 197/198, 415–429 (1999)

    MathSciNet  Google Scholar 

  15. Telle J.A., Proskurowski A.: Algorithms for vertex partitioning problems on partial k-trees. SIAM J. Discret. Math. 10, 529–550 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  16. Zelinka B.: Remarks on restrained and total restrained domination in graphs. Czechoslov. Math. J. 55(130), 165–173 (2005)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Johannes H. Hattingh.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hattingh, J.H., Joubert, E.J. Restrained Domination in Claw-Free Graphs with Minimum Degree at Least Two. Graphs and Combinatorics 25, 693–706 (2009). https://doi.org/10.1007/s00373-010-0883-3

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00373-010-0883-3

Keywords