Abstract
Let G = (V, E) be a graph. A set \({S\subseteq V}\) is a restrained dominating set if every vertex in V − S is adjacent to a vertex in S and to a vertex in V − S. The restrained domination number of G, denoted γ r (G), is the smallest cardinality of a restrained dominating set of G. We will show that if G is claw-free with minimum degree at least two and \({G\notin \{C_{4},C_{5},C_{7},C_{8},C_{11},C_{14},C_{17}\}}\) , then \({\gamma_{r}(G)\leq \frac{2n}{5}.}\)
Similar content being viewed by others
References
Chen X.G., Ma D.X., Sun L.: On total restrained domination in graphs. Czechoslovak Math. J. 55(1), 165–173 (2005)
Dankelmann P., Day D., Hattingh J.H., Henning M.A., Markus L.R., Swart H.C.: On equality in an upper bound for the restrained and total domination numbers of a graph. Discret. Math. 307, 2845–2852 (2007)
Dankelmann P., Hattingh J.H., Henning M.A., Swart H.C.: Trees with equal domination and restrained domination numbers. J. Glob. Optim. 34, 597–607 (2006)
Domke G.S., Hattingh J.H., Hedetniemi S.T., Markus L.R.: Restrained domination in trees. Discret. Math. 211, 1–9 (2000)
Domke G.S., Hattingh J.H., Hedetniemi S.T., Laskar R.C., Markus L.R.: Restrained domination in graphs. Discret. Math. 203, 61–69 (1999)
Domke G.S., Hattingh J.H., Henning M.A., Markus L.R.: Restrained domination in graphs with minimum degree two. J. Combin. Math. Combin. Comput. 35, 239–254 (2000)
Hattingh J.H., Henning M.A.: Restrained domination excellent trees. Ars Combin. 87, 337–351 (2008)
Hattingh, J.H., Jonck, E., Joubert, E.J.: An upper bound for the total restrained domination number of a tree. J. Combin. Optim. (to appear)
Hattingh J.H., Jonck E., Joubert E.J., Plummer A.R.: Nordhaus-Gaddum results for restrained domination and total restrained domination in graphs. Discret. Math. 308, 1080–1087 (2008)
Hattingh J.H., Joubert E.J.: An upper bound for the restrained domination number of a graph with minimum degree at least two in terms of order and minimum degree. Discret. Appl. Math. 157, 2846–2858 (2009)
Hattingh, J.H., Plummer, A.R.: A note on restrained domination in trees. Ars Combin. (to appear)
Haynes T.W., Hedetniemi S.T., Slater P.J.: Fundamentals of Domination in Graphs. Marcel Dekker, New York (1997)
Haynes, T.W., Hedetniemi, S.T., Slater, P.J. (eds): Domination in Graphs: Advanced Topics. Marcel Dekker, New York (1997)
Henning M.A.: Graphs with large restrained domination number. Discret. Math. 197/198, 415–429 (1999)
Telle J.A., Proskurowski A.: Algorithms for vertex partitioning problems on partial k-trees. SIAM J. Discret. Math. 10, 529–550 (1997)
Zelinka B.: Remarks on restrained and total restrained domination in graphs. Czechoslov. Math. J. 55(130), 165–173 (2005)
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Hattingh, J.H., Joubert, E.J. Restrained Domination in Claw-Free Graphs with Minimum Degree at Least Two. Graphs and Combinatorics 25, 693–706 (2009). https://doi.org/10.1007/s00373-010-0883-3
Received:
Revised:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00373-010-0883-3