Skip to main content
Log in

Properly Edge-Coloured Subgraphs in Colourings of Bounded Degree

  • Original Paper
  • Published:
Graphs and Combinatorics Aims and scope Submit manuscript

Abstract

The smallest n such that every colouring of the edges of K n must contain a monochromatic star K 1,s+1 or a properly edge-coloured K t is denoted by f (s, t). Its existence is guaranteed by the Erdős–Rado Canonical Ramsey theorem and its value for large t was discussed by Alon, Jiang, Miller and Pritikin (Random Struct. Algorithms 23:409–433, 2003). In this note we primarily consider small values of t. We give the exact value of f (s, 3) for all s ≥ 1 and the exact value of f (2, 4), as well as reducing the known upper bounds for f (s, 4) and f (s, t) in general.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alon N., Jiang T., Miller Z., Pritikin D.: Properly colored subgraphs and rainbow subgraphs in edge-colorings with local constraints. Random Struct. Algorithms 23, 409–433 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  2. Chen, G., Schelp, R., Wei, B.: Monochromatic-rainbow Ramsey numbers. 14th Cumberland Conference Abstracts, May 2001. http://www.msci.memphis.edu/~pbalistr/Abstracts.html

  3. Erdős P., Rado R.: A combinatorial theorem. J. Lond. Math. Soc. 25, 249–255 (1950)

    Article  Google Scholar 

  4. Gallai T.: Transitiv orientierbare Graphen. Acta Math. Acad. Sci. Hung. 18, 25–66 (1967)

    Article  MATH  MathSciNet  Google Scholar 

  5. Gyárfás A., Lehel J., Schelp R.H., Tuza Zs.: Ramsey numbers for local colorings. Graphs Combin. 3, 267–277 (1987)

    Article  MATH  MathSciNet  Google Scholar 

  6. Gyárfás A., Simonyi G.: Edge colorings of complete graphs without tricolored triangles. J. Graph Theory 46, 211–216 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  7. Jamison R.E., Jiang T., Ling A.C.H.: Constrained Ramsey numbers of graphs. J. Graph Theory 42, 1–16 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  8. Katona Gy., Nemetz T., Simonovits M.: On a problem of Turán in the theory of graphs (in Hungarian). Mat. Lapok 15, 228–238 (1964)

    MATH  MathSciNet  Google Scholar 

  9. Lefmann H., Rödl V.: On Erdős–Rado numbers. Combinatorica 15, 85–104 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  10. Markström, K.: Turan graphs for 3-uniform complete graphs of small order (Manuscript)

  11. Markström, K.: A web archive of turan graphs. http://abel.math.umu.se/~klasm/Data/hypergraphs/turanhypergraphs.html

  12. Sidorenko A.: What we know and what we do not know about Turan numbers. Graphs Combin. 11, 179–199 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  13. Stanton, R.G., Bate, J.A.: A computer search for B-coverings. Lecture Notes in Mathematics, vol. 829, pp. 37–50. Springer, Berlin (1980)

  14. Thomason A., Wagner P.: Complete graphs with no rainbow path. J. Graph Theory 54, 261–266 (2006)

    Article  MathSciNet  Google Scholar 

  15. Wagner P.: An upper bound for constrained Ramsey numbers. Combin. Probab. Comput. 15, 619–626 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  16. Wagner, P.: Ph.D. Thesis, University of Cambridge (2006)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrew Thomason.

Additional information

P. Wagner’s research funded by Trinity College, University of Cambridge.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Markström, K., Thomason, A. & Wagner, P. Properly Edge-Coloured Subgraphs in Colourings of Bounded Degree. Graphs and Combinatorics 27, 243–249 (2011). https://doi.org/10.1007/s00373-010-0970-5

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00373-010-0970-5

Keywords