Skip to main content
Log in

Cubicity and Bandwidth

  • Original Paper
  • Published:
Graphs and Combinatorics Aims and scope Submit manuscript

Abstract

A unit cube in \({\mathbb{R}^k}\) (or a k-cube in short) is defined as the Cartesian product R 1 × R 2 × ... × R k where R i (for 1 ≤ i ≤ k) is a closed interval of the form [a i , a i + 1] on the real line. A k-cube representation of a graph G is a mapping of the vertices of G to k-cubes such that two vertices in G are adjacent if and only if their corresponding k-cubes have a non-empty intersection. The cubicity of G is the minimum k such that G has a k-cube representation. From a geometric embedding point of view, a k-cube representation of G = (V, E) yields an embedding \({f: V(G) \rightarrow \mathbb{R}^k}\) such that for any two vertices u and v, ||f(u) − f(v)|| ≤ 1 if and only if \({(u, v) \in E(G)}\) . We first present a randomized algorithm that constructs the cube representation of any graph on n vertices with maximum degree Δ in O(Δ ln n) dimensions. This algorithm is then derandomized to obtain a polynomial time deterministic algorithm that also produces the cube representation of the input graph in the same number of dimensions. The bandwidth ordering of the graph is studied next and it is shown that our algorithm can be improved to produce a cube representation of the input graph G in O(Δ ln b) dimensions, where b is the bandwidth of G, given a bandwidth ordering of G. Note that bn and b is much smaller than n for many well-known graph classes. Another upper bound of b + 1 on the cubicity of any graph with bandwidth b is also shown. Together, these results imply that for any graph G with maximum degree Δ and bandwidth b, the cubicity is O(min{b, Δ ln b}). The upper bound of b + 1 is used to derive upper bounds for the cubicity of circular-arc graphs, cocomparability graphs and AT-free graphs in terms of the maximum degree Δ.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Adiga A.: Cubicity of threshold graphs. Discrete Math. 309(8), 2535–2537 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  2. Adiga, A., Chandran, L.S.: Cubicity of interval graphs and the claw number. European Conference on Combinatorics, Graph Theory and Applications (EuroComb 2009). Electron. Notes in Discrete Math. 34, 471–475 (2009)

  3. Afshani, P., Chan, T.M.: Approximation algorithms for maximum cliques in 3d unit-disk graphs. In: Proceedings of 17th Canadian Conference on Computational Geometry (CCCG), pp. 6–9 (2005)

  4. Agarwal P.K., van Kreveld M., Suri S.: Label placement by maximum independent set in rectangles. Comput. Geom. 11(3–4), 209–218 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  5. Berman P., DasGupta B., Muthukrishnan S., Ramaswami S.: Efficient approximation algorithms for tiling and packing problems with rectangles. J. Algorithms 41(2), 443–470 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  6. Chandran L.S., Das A., Shah C.D.: Cubicity, boxicity, and vertex cover. Discrete Math. 309(8), 2488–2496 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  7. Chandran L.S., Francis M.C., Sivadasan N.: Geometric representation of graphs in low dimension using axis-parallel boxes. Algorithmica 56(2), 129–140 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  8. Chandran L.S., Mannino C., Orialo G.: On the cubicity of certain graphs. Inform. Process. Lett. 94(3), 113–118 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  9. Chandran L.S., Mathew K.A.: An upper bound for cubicity in terms of boxicity. Discrete Math. 309(8), 2571–2574 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  10. Erlebach T., Jansen K., Seidel E.: Polynomial-time approximation schemes for geometric intersection graphs. SIAM J. Comput. 34(6), 1302–1323 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  11. Feige, U.: Approximating the bandwidth via volume respecting embeddings. In: Proceedings of the 30th Annual ACM Symposium on Theory of Computing, pp. 90–99. ACM Press (1998)

  12. Fishburn P.C.: On the sphericity and cubicity of graphs. J. Combin. Theory Ser. B 35(3), 309–318 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  13. Heckmann R., Klasing R., Monien B., Unger W.: Optimal embedding of complete binary trees into lines and grids. J. Parallel Distrib. Comput. 49(1), 40–56 (1998)

    Article  MATH  Google Scholar 

  14. Kloks, T., Kratsch, D., Borgne, Y.L., Müller, H.: Bandwidth of split and circular permutation graphs. In: Proceedings of the 26th International Workshop on Graph-Theoretic Concepts in Computer Science (WG 2000), LNCS, vol. 1928. pp. 243–254. Springer, Berlin (2000)

  15. Kloks T., Kratsch D., Müller H.: Approximating the bandwidth of asteroidal triple-free graphs. J. Algorithms 32(1), 41–57 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  16. Kratsch D., Stewart L.: Domination on cocomparability graphs. SIAM J. Discrete Math. 6(3), 400–417 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  17. Kratsch D., Stewart L.: Approximating bandwidth by mixing layouts of interval graphs. SIAM J. Discrete Math. 15(4), 435–449 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  18. Maehara H.: Sphericity exceeds cubicity for almost all complete bipartite graphs. J. Combin. Theory Ser. B 40(2), 231–235 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  19. Michael T., Quint T.: Sphere of influence graphs and the L -metric. Discrete Appl. Math. 127(3), 447–460 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  20. Michael T., Quint T.: Sphericity, cubicity, and edge clique covers of graphs. Discrete Appl. Math. 154(8), 1309–1313 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  21. Roberts, F.S.: On the boxicity and cubicity of a graph. In: Recent Progresses in Combinatorics, pp. 301–310. Academic Press, Dublin (1969)

  22. Rosgen B., Stewart L.: Complexity results on graphs with few cliques. Discrete Math. Theor. Comput. Sci. 9(1), 127–136 (2007)

    MathSciNet  MATH  Google Scholar 

  23. Turner J.: On the probable performance of heuristics for bandwidth minimization. SIAM J. Comput. 15(2), 561–580 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  24. Unger, W.: The complexity of the approximation of the bandwidth problem. In: Proceedings of the 39th Annual Symposium on Foundations of Computer Science, pp. 82–91. IEEE Computer Society (1998)

  25. van Leeuwen, E.J.: Approximation algorithms for unit disk graphs. In: Proceedings of the 31st International Workshop on Graph-Theoretic Concepts in Computer Science (WG 2005), LNCS, vol. 3787, pp. 351–361 (2005)

  26. Yannakakis M.: The complexity of the partial order dimension problem. SIAM J. Algebraic Discrete Methods 3(3), 351–358 (1982)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mathew C. Francis.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chandran, L.S., Francis, M.C. & Sivadasan, N. Cubicity and Bandwidth. Graphs and Combinatorics 29, 45–69 (2013). https://doi.org/10.1007/s00373-011-1099-x

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00373-011-1099-x

Keywords

Navigation