Skip to main content
Log in

On Spanning Disjoint Paths in Line Graphs

  • Original Paper
  • Published:
Graphs and Combinatorics Aims and scope Submit manuscript

Abstract

Spanning connectivity of graphs has been intensively investigated in the study of interconnection networks (Hsu and Lin, Graph Theory and Interconnection Networks, 2009). For a graph G and an integer s > 0 and for \({u, v \in V(G)}\) with u ≠ v, an (s; u, v)-path-system of G is a subgraph H consisting of s internally disjoint (u,v)-paths. A graph G is spanning s-connected if for any \({u, v \in V(G)}\) with u ≠ v, G has a spanning (s; u, v)-path-system. The spanning connectivity κ*(G) of a graph G is the largest integer s such that G has a spanning (k; u, v)-path-system, for any integer k with 1 ≤ k ≤ s, and for any \({u, v \in V(G)}\) with u ≠ v. An edge counter-part of κ*(G), defined as the supereulerian width of a graph G, has been investigated in Chen et al. (Supereulerian graphs with width s and s-collapsible graphs, 2012). In Catlin and Lai (Graph Theory, Combinatorics, and Applications, vol. 1, pp. 207–222, 1991) proved that if a graph G has 2 edge-disjoint spanning trees, and if L(G) is the line graph of G, then κ*(L(G)) ≥ 2 if and only if κ(L(G)) ≥ 3. In this paper, we extend this result and prove that for any integer k ≥ 2, if G 0, the core of G, has k edge-disjoint spanning trees, then κ*(L(G)) ≥ k if and only if κ(L(G)) ≥ max{3, k}.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bondy, J.A., Murty, U.S.R.: Graph Theory. Springer, New York (2008)

  2. Cai L., Corneil D.: On cycle double covers of line graphs. Discrete Math. 102, 103–106 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  3. Catlin P.A.: A reduction method to find spanning eulerian subgraphs. J. Graph Theory 12, 29–45 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  4. Catlin P.A., Han Z., Lai H.-J.: Graphs without spanning eulerian subgraphs. Discrete Math. 160, 81–91 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  5. Catlin, P.A., Lai, H.-J.: Spanning trails joining two given edges. In: Alavi, Y., Chartrand, G., Oellermann, O., Schwenk, A. (eds.) Graph Theory, Combinatorics, and Applications, vol. 1, pp. 207–222, Kalamazoo (1991)

  6. Chen Z.-H., Lai H.-J., Lai H.Y.: Nowhere zero flows in line graph. Discrete Math. 230, 133–141 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  7. Chen, Y., Lai, H.-J., Li, H., Li, P.: Supereulerian graphs with width s and s-collapsible graphs (2012, submitted)

  8. Gould R.: Advances on the Hamiltonian problem—a survey. Graphs Combin. 19, 7–52 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  9. Gu, X., Lai, H.-J., Yao, S.: Characterizations of minimal graphs with equal edge connectivity and spanning tree packing number (submitted)

  10. Harary F., Nash-Williams C.St.J.A.: On eulerian and hamiltonian graphs and line graphs. Can. Math. Bull. 8, 701–709 (1965)

    Article  MathSciNet  MATH  Google Scholar 

  11. Hsu, L.-H., Lin, C.-K.: Graph Theory and Interconnection Networks. CRC Press, Boca Raton (2009).

  12. Huang P., Hsu L.: The spanning connectivity of the line graphs. Appl. Math. Lett. 24(9), 1614–1617 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  13. Jaeger, F.: Nowhere-zero flow problems. In: Beineke, L.W., Wilson, R.J. (eds.) Topics in Graph Theory, vol. 3, pp. 70–95. Academic Press, London (1988)

  14. Lai H.-J., Li P., Liang Y., Xu J.: Reinforcing a matroid to have k disjoint bases. Appl. Math. 1, 244–249 (2010)

    Article  Google Scholar 

  15. Li, P.: Bases and cycles in matroids and graphs. Ph. D. Dissertation, West Virginia University (2012)

  16. Liu D., Lai H.-J., Chen Z.-H.: Reinforcing the number of disjoint spanning trees. Ars Comb. 93, 113–127 (2009)

    MathSciNet  MATH  Google Scholar 

  17. Nash-Williams C.St.J.A.: Edge-disjoint spanning trees of finite graphs. J. Lond. Math. Soc. 36, 445–450 (1961)

    Article  MathSciNet  MATH  Google Scholar 

  18. Seymour, P.D.: Sums and circuits. In: Bondy, J.A., Murty, U.S.R. (eds.) Graph Theory and Related Topics, pp. 342–355. Academic Press, New York (1979)

  19. Shao, Y.: Claw-free graphs and line graphs. Ph. D. Dissertation, West Virginia University (2005)

  20. Szekeres G.: Polyhedral decompositions of cubic graphs. Bull. Aust. Math. Soc. 8, 367–387 (1973)

    Article  MathSciNet  MATH  Google Scholar 

  21. Thomassen C.: Reflections on graph theory. J. Graph Theory 10, 309–324 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  22. Tutte W.T.: On the imbedding of linear graphs into surfaces. Proc. Lond. Math. Soc. Ser. 2(51), 464–483 (1949)

    Google Scholar 

  23. Tutte W.T.: On the problem of decomposing a graph into n connected factors. J. Lond. Math. Soc. 36, 221–230 (1961)

    Article  MathSciNet  MATH  Google Scholar 

  24. Zhan S.M.: Hamiltonian connectedness of line graphs. Ars Comb. 22, 89–95 (1986)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhi-Hong Chen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, Y., Chen, ZH., Lai, HJ. et al. On Spanning Disjoint Paths in Line Graphs. Graphs and Combinatorics 29, 1721–1731 (2013). https://doi.org/10.1007/s00373-012-1237-0

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00373-012-1237-0

Keywords