Skip to main content
Log in

A Note on Large Rainbow Matchings in Edge-coloured Graphs

  • Original Paper
  • Published:
Graphs and Combinatorics Aims and scope Submit manuscript

Abstract

A rainbow subgraph in an edge-coloured graph is a subgraph such that its edges have distinct colours. The minimum colour degree of a graph is the smallest number of distinct colours on the edges incident with a vertex over all vertices. Kostochka, Pfender, and Yancey showed that every edge-coloured graph on n vertices with minimum colour degree at least k contains a rainbow matching of size at least k, provided \({n\geq \frac{17}{4}k^2}\) . In this paper, we show that n ≥ 4k − 4 is sufficient for k ≥ 4.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

References

  1. Brualdi, R.A., Ryser, H.J.: Combinatorics Matrix Theory, Encyclopedia of Mathematics and its Applications, vol. 39. Cambridge University Press, London (1991)

  2. Diemunsch, J., Ferrara, M., Moffatt, C., Pfender, F., Wenger, P.S.: Rainbow matching of size δ(G) in properly-colored graphs (2011). arXiv:1108.2521

  3. Diemunsch, J., Ferrara, M., Lo, A., Moffatt, C., Pfender, F., Wenger, P.S.: Rainbow matching of size δ(G) in properly-colored graphs. Electron. J. Combin. 19(2), #P52 (2012)

  4. Gyárfás, A., Sárközy, G.N.: Rainbow matchings and partial transversals of Latin squares (2012). arXiv:1208.5670v1

  5. Kano M., Li X.: Monochromatic and heterochromatic subgraphs in edge-colored graphs—a survey. Graphs Combin. 24, 237–263 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  6. Kostochka, A.: Personal communication

  7. Kostochka, A., Pfender, F., Yancey, M.: Large rainbow matchings in large graphs (2012). arXiv:1204.3193

  8. Kostochka A., Yancey M.: Large rainbow matchings in edge-coloured graphs. Combin. Probab. Comput. 21, 255–263 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  9. LeSaulnier, T.D., Stocker, C., Wenger, P.S., West, D.B.: Rainbow matching in edge-colored graphs. Electron. J. Combin. 17, #N26 (2010)

  10. Li, H., Wang, G.: Heterochromatic matchings in edge-colored graphs. Electron. J. Combin. 15, #R138 (2008)

  11. Liu G., Wang G., Zhang J.: Existence of rainbow matchings in properly edge-colored graphs. Front. Math. China 7(3), 543–550 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  12. Lo, A.: A note on rainbow matchings in properly edge-coloured graphs. arXiv:1108.5273 (2011)

  13. Ryser, H.J.: Neuere probleme der kombinatorik. Vortrage über Kombinatorik. Mathematisches Forschungsinstitut Oberwolfach, Oberwolfach, pp 24–29 (1967)

  14. Wang, G.: Rainbow matchings in properly edge colored graphs. Electron. J. Combin. 18, #P162 (2011)

  15. Wanless, I.M.: Transversals in latin squares: a survey. Surveys in Combinatorics 2011, Lond. Math. Soc, pp 403–437 (2011)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ta Sheng Tan.

Additional information

Allan Lo was supported by the ERC, grant no. 258345.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lo, A., Tan, T.S. A Note on Large Rainbow Matchings in Edge-coloured Graphs. Graphs and Combinatorics 30, 389–393 (2014). https://doi.org/10.1007/s00373-012-1271-y

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00373-012-1271-y

Keywords

Mathematics Subject Classification (2000)