Skip to main content
Log in

The Chvátal–Erdös Condition for Group Connectivity in Graphs

  • Original Paper
  • Published:
Graphs and Combinatorics Aims and scope Submit manuscript

Abstract

Let G be a graph and A an abelian group with the identity element 0 and \({|A| \geq 4}\) . Let D be an orientation of G. The boundary of a function \({f: E(G) \rightarrow A}\) is the function \({\partial f: V(G) \rightarrow A}\) given by \({\partial f(v) = \sum_{e \in E^+(v)}f(e) - \sum_{e \in E^-(v)}f(e)}\) , where \({v \in V(G), E^+(v)}\) is the set of edges with tail at v and \({E^-(v)}\) is the set of edges with head at v. A graph G is A-connected if for every b: V(G) → A with \({\sum_{v \in V(G)} b(v) = 0}\) , there is a function \({f: E(G) \mapsto A-\{0\}}\) such that \({\partial f = b}\) . A graph G is A-reduced to G′ if G′ can be obtained from G by contracting A-connected subgraphs until no such subgraph left. Denote by \({\kappa^{\prime}(G)}\) and α(G) the edge connectivity and the independent number of G, respectively. In this paper, we prove that for a 2-edge-connected simple graph G, if \({\kappa^{\prime}(G) \geq \alpha(G)-1}\) , then G is A-connected or G can be A-reduced to one of the five specified graphs or G is one of the 13 specified graphs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bondy, J.A., Murty, U.S.R.: Graph theory with application. North-Holland, New York (1976)

  2. Catlin P.A.: A reduction methods to find spanning eulerian subgraphs. J. Graph Theory 12, 29–44 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  3. Catlin P.A.: Supereulerian graphs, collapsible graphs and four-cycles. Congressus Numerantium 58, 233–246 (1987)

    MathSciNet  Google Scholar 

  4. Chen Z.H.: Supereulerian graphs, independent set and degree-sum conditions. Discret. Math. 179, 73–87 (1998)

    Article  MATH  Google Scholar 

  5. Chen Z.H.: Supereulerian graphs and Petersen graph. J. Comb. Math. Comb. Comput. 9, 70–89 (1991)

    Google Scholar 

  6. Chen J., Eschen E., Lai H.-J.: Group connectivity of certain graphs. Ars Comb. 89, 141–158 (2008)

    MATH  MathSciNet  Google Scholar 

  7. Chvátal V., Erdös P.: A note on Hamiltonian circuits. Discret. Math. 2, 111–113 (1972)

    Article  MATH  Google Scholar 

  8. Fan G., Zhou C.: Ore condition and nowhere zero 3-flows. SIAM J. Discret. Math. 22, 288–294 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  9. Fan G., Zhou C.: Degree sum and nowhere zero 3-flows. Discret. Math. 308, 6233–6240 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  10. Han L., Lai H.-J., Xiong L., Yan H.: The Chvátal–Erdös condition for supereulerian graphs and the Hamiltonian index. Discret. Math. 310, 2082–2090 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  11. Jaeger, F.: On nowhere-zero flows in multigraphs. In: Proceedings of the Fifth British Combinatorial Conference, pp. 373–378 (1975) (Congr. Numer. XV.)

  12. Jaeger F: Flows and generalized coloring theorems in graphs. J. Comb. Theory Ser. B 26, 205–216 (1979)

    Article  MATH  MathSciNet  Google Scholar 

  13. Jaeger F., Linial N., Payan C., Tarsi M.: Group connectivity of graphs—a nonhomogeneous analogue of nowhere-zero flow properties. J. Comb. Theory Ser. B 56, 165–182 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  14. Kochol M.: Smallest counterexample to the 5-flow conjecture has girth at least eleven. J. Comb. Theory Ser. B 100, 381–389 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  15. Lai H.-J.: Group connectivity of 3-edge-connected chordal graphs. Graphs Comb. 16, 165–176 (2000)

    Article  MATH  Google Scholar 

  16. Lai H.-J.: Nowhere zero 3-flows in locally connected graphs. J. Graph Theory 42, 211–219 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  17. Lai H.-J: Extending a partial nowhere zero 4-flow. J. Graph Theory 30, 277–288 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  18. Lai H.-J., Li X., Shao Y., Zhan M.: Group connectivity and group colorings of graphs—a survey. Acta Mathematica Sinica 27, 405–434 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  19. Li X., Lai H.-J., Shao Y.: Degree condition and Z 3-connectivity. Discret. Math. 312, 1658–1669 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  20. Luo R., Xu R., Yin J., Yu G.: Ore-condition and Z 3-connectivity. Eur. J. Comb. 29, 1587–1595 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  21. Ramsey F.P.: On a problem of formal logic. Proc. Lond. Math. Soc. 30, 264–286 (1930)

    Article  MathSciNet  Google Scholar 

  22. Tutte W.T.: A contribution on the theory of chromatic polynomial. Can. J. Math. 6, 80–91 (1954)

    Article  MATH  MathSciNet  Google Scholar 

  23. Tutte W.T.: On the algebraic theory of graph colorings. J. Comb. Theory 1, 15–50 (1966)

    Article  MATH  MathSciNet  Google Scholar 

  24. Yao X., Li X., Lai H.-J.: Degree conditions for group connectivity. Discret. Math. 310, 1050–1058 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  25. Zhang, C.Q.: Integer flows and cycle cover of graphs. Marcel Dekker Inc., New York (1997)

  26. Zhang X., Zhan M., Xu R., Shao Y., Li X., Lai H.-J: Degree sum condition for Z 3-connectivity in graphs. Discret. Math. 310, 3390–3397 (2010)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiangwen Li.

Additional information

X. Li is supported by the Natural Science Foundation of China (11171129).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, X., Li, X. The Chvátal–Erdös Condition for Group Connectivity in Graphs. Graphs and Combinatorics 30, 769–781 (2014). https://doi.org/10.1007/s00373-013-1288-x

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00373-013-1288-x

Keywords

Navigation