Skip to main content
Log in

The Linear t-Colorings of Sierpiński-Like Graphs

  • Original Paper
  • Published:
Graphs and Combinatorics Aims and scope Submit manuscript

Abstract

A proper t-coloring of a graph G is a mapping \({\varphi: V(G) \rightarrow [1, t]}\) such that \({\varphi(u) \neq \varphi(v)}\) if u and v are adjacent vertices, where t is a positive integer. The chromatic number of a graph G, denoted by \({\chi(G)}\) , is the minimum number of colors required in any proper coloring of G. A linear t-coloring of a graph is a proper t-coloring such that the graph induced by the vertices of any two color classes is the union of vertex-disjoint paths. The linear chromatic number of a graph G, denoted by \({lc(G)}\) , is the minimum t such that G has a linear t-coloring. In this paper, the linear t-colorings of Sierpiński-like graphs S(n, k), \({S^+(n, k)}\) and \({S^{++}(n, k)}\) are studied. It is obtained that \({lc(S(n, k))= \chi (S(n, k)) = k}\) for any positive integers n and k, \({lc(S^+(n, k)) = \chi(S^+(n, k)) = k}\) and \({lc(S^{++}(n, k)) = \chi(S^{++}(n, k)) = k}\) for any positive integers \({n \geq 2}\) and \({k \geq 3}\) . Furthermore, we have determined the number of paths and the length of each path in the subgraph induced by the union of any two color classes completely.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Afriat S.N.: The Ring of Linked Rings. Duckworth, London (1982)

    Google Scholar 

  2. Arett D., Dorée S.: Coloring on the tower of Hanoi graphs. Math. Mag. 83, 200–209 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  3. Beaudou L., Gravier S., Klavžar S., Kovše M., Mollard M.: Covering codes in Sierpiński graphs. Discrete Math. and Theoretical Comput. Sci. 12, 63–74 (2010)

    MATH  Google Scholar 

  4. Bode J.P., Hinz A. M.: Results and open problems on the Tower of Hanoi. Congr. Numer. 139, 113–122 (1999)

    MATH  MathSciNet  Google Scholar 

  5. Chan T. H.: A statistical analysis of the Towers of Hanoi problem. Int. J. Comput. Math 28, 57–65 (1989)

    Article  MATH  Google Scholar 

  6. Cull, P.; Nelson, I.: Error-correcting codes on the Towers of Hanoi graphs. Discrete Math.208-209: 157-175 (1999).

    Google Scholar 

  7. Dong W., Xu B., Zhang X.: Improved bounds on linear coloring of plane graphs. Sciences China Mathematics 53, 1895–1902 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  8. Fu H. Y., Xie D. Z.: Equitable L(2,1)-labelings of Sierpiński graphs. Australasian J. of Comb. 46, 147–156 (2010)

    MATH  MathSciNet  Google Scholar 

  9. Gravier S., Klavžar S., Mollard M.: Codes and L(2,1)-labelings in Sierpiński-like graphs. Taiwan. J. Math. 9, 671–681 (2005)

    MATH  Google Scholar 

  10. Grünbaum B.: Acyclic coloring of planar graphs. Isreal J. Math. 41, 390–408 (1973)

    Article  Google Scholar 

  11. Hind H., Molly M., Reed B.: Colouring a graph frugally. Combinatorica 17, 469–482 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  12. Hinz A. M.: Pascal’s triangle and the Tower of Hanoi. Am. Math. Mon. 99, 538–544 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  13. Hinz A. M., Klavžar S., Milutinović U., Parisse D., Petr C.: Metric properties of the Tower of Hanoi graphs and Stern’s diatomic sequence. Eur. J. Combin. 26, 693–708 (2005)

    Article  MATH  Google Scholar 

  14. Hinz A. M.: The tower of Hanoi. Enseign. Math. 2(35), 289–321 (1989)

    MathSciNet  Google Scholar 

  15. Hinz, A. M.: The tower of Hanoi, In: K. P. Shum, E.J. Taft, Z. X. Wan (Eds), Algebras and Combinatorics,pp. 277–289. Springer, Singapore (1999)

  16. Hinz A. M., Parisse D.: On the planarity of Hanoi graphs. Expo. Math. 20, 263–268 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  17. Hinz A. M., Parisse D.: Coloring Hanoi and Sierpiński graphs. Discrete Math. 312, 1521–1535 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  18. Hinz A. M., Parisse D.: The Average Eccentricity of Sierpiński graphs. Graphs and Combinatorics 28, 671–686 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  19. Jakovac M., Klavžar S.: Vertex-, edge-, and total-coloring of Sierpiński-like graphs. Discrete Math. 309, 1548–1556 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  20. Klavžar S., Milutinović U.: Graphs S(n, k) and a variant of the tower of Hanoi problem. Czechoslovak Math. J 47(122), 95–104 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  21. Klavžar S., Mohar B.: Crossing number of Sierpiński-like graphs. J. Graph Theory 50, 186–198 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  22. Klavžar S., Milutinović U., Petr C.: 1-perfect codes in Sierpiński-like graphs. Bull. Austral. Math. Soc 66, 369–384 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  23. Lin C. H., Liu J. J., Wang Y. L., Yen W. C.: The hub number of Sierpiński-like graphs. Theory of Computing Systems 49, 588–600 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  24. Lipscomb S. L., Perry J. C.: Lipscomb’s L(A) space fractalized in Hilbert’s l 2(A) space. Proc. Amer. Math. Soc. 115, 1157–1165 (1992)

    MATH  MathSciNet  Google Scholar 

  25. Liu B., Liu G.Z.: New Upper Bounds on Linear Coloring of Planar Graphs. Acta Mathematica Sinica, English Series 28, 1187–1196 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  26. Milutinović U.: Competeness of the Lipscomb space. Gla. Ser. III 27(47), 343–364 (1992)

    MATH  Google Scholar 

  27. Parisse D.: On some metric properties of the Sierpiński graphs S(n, k). Ars combin. 90, 145–160 (2009)

    MATH  MathSciNet  Google Scholar 

  28. Pisanski T., Tucker T.W.: Growth in repeated truncations of maps. Atti Sem. Mat. Fis. Univ. Modena 49, 167–176 (2001)

    MATH  MathSciNet  Google Scholar 

  29. Raspaud A., Wang W.F.: Linear coloring of planar graphs with large girth. Discrete Math. 309, 5678–5686 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  30. Romik D.: Shortest paths in the Tower of Hanoi graph and finite automata. SIAM J. Discrete Math. 20, 610–622 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  31. Wang W. F., Li C.: Linear coloring of graphs embeddable in a surface of nonnegative characteristic. Sciences in China (Series A) 52, 991–1003 (2009)

    Article  MATH  Google Scholar 

  32. Wang Y. Q., Wu Q.: Linear coloring of sparse graphs. Discrete Appl. Math. 160, 664–672 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  33. Xue B., Zuo L., Li G.J.: The hamiltonicity and path t-coloring of Sierpiński-like graphs. Discrete Appl. Math. 160, 1822–1836 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  34. Yuster R.: Linear coloring of graphs. Discrete Math. 185, 293–297 (1998)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Liancui Zuo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xue, B., Zuo, L., Wang, G. et al. The Linear t-Colorings of Sierpiński-Like Graphs. Graphs and Combinatorics 30, 755–767 (2014). https://doi.org/10.1007/s00373-013-1289-9

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00373-013-1289-9

Keywords

Navigation