Skip to main content
Log in

The Chromatic Index of a Graph Whose Core is a Cycle of Order at Most 13

  • Original Paper
  • Published:
Graphs and Combinatorics Aims and scope Submit manuscript

Abstract

Let G be a graph. The core of G, denoted by G Δ, is the subgraph of G induced by the vertices of degree Δ(G), where Δ(G) denotes the maximum degree of G. A k -edge coloring of G is a function f : E(G) → L such that |L| = k and f (e 1) ≠ f (e 2) for all two adjacent edges e 1 and e 2 of G. The chromatic index of G, denoted by χ′(G), is the minimum number k for which G has a k-edge coloring. A graph G is said to be Class 1 if χ′(G) = Δ(G) and Class 2 if χ′(G) = Δ(G) + 1. In this paper it is shown that every connected graph G of even order whose core is a cycle of order at most 13 is Class 1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Akbari S., Cariolaro D., Chavoshi M., Ghanbari M., Zare S.: Some Criteria for a graph to be Class 1. Discrete Math. 312, 2593–2598 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  2. Akbari S., Ghanbari M., Kano M., Nikmehr M.J.: The chromatic index of a graph whose core has maximum degree 2. Electron. J. Comb. 19, P58 (2012)

    MathSciNet  Google Scholar 

  3. Bondy, J.A., Murty, U.S.R.: Graph Theory with Applications. North Holland, New York (1976)

  4. Cariolaro D., Cariolaro G.: Colouring the petals of a graph. Electron. J. Comb. 10, R6 (2003)

    MathSciNet  Google Scholar 

  5. Chetwynd A.G., Hilton A.J.W.: A Δ-subgraph condition for a graph to be Class 1. J. Combin. Theory Ser. B. 46, 37–45 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  6. Chetwynd A.G., Hilton A.J.W.: 1-factorizing regular graphs of high degree—an improved bound. Discret. Math. 75, 103–112 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  7. Dugdale J.K., Hilton A.J.W.: A sufficient condition for a graph to be the core of a Class 1 graph. Comb. Probab. Comput. 9, 97–104 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  8. Fiorini, S., Wilson R.J.: Edge-Colourings of Graphs. Research Notes in Mathematics, Pitman (1977)

  9. Fournier J.-C.: Coloration des arêtes d’un graphe. Cahiers du CERO (Bruxelles) 15, 311–314 (1973)

    MATH  MathSciNet  Google Scholar 

  10. Hilton A.J.W.: Two conjectures on edge-colouring. Discrete Math. 74, 61–64 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  11. Hilton A.J.W., Zhao C.: A sufficient condition for a regular graph to be Class 1. J. Graph Theory 17(6), 701–712 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  12. Hilton A.J.W., Zhao C.: On the edge-colouring of graphs whose core has maximum degree two. J. Comb. Math. Comb. Comput. 21, 97–108 (1996)

    MATH  MathSciNet  Google Scholar 

  13. Hilton A.J.W., Zhao C.: The chromatic index of a graph whose core has maximum degree two. Discrete Math 101, 135–147 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  14. Hoffman D.G.: Cores of Class II graphs. J. Graph Theory 20, 397–402 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  15. Holyer I.: The NP-completeness of edge-colouring. SIAM J. Comput. 10, 718–720 (1981)

    Article  MATH  MathSciNet  Google Scholar 

  16. Song Z., Yap H.P.: Chromatic index critical graphs of even order with five major vertices. Graph Comb. 21, 239–246 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  17. Vizing, V.G.: On an estimate of the chromatic class of a p-graph. Diskret. Analiz. 3, 25–30 (1964) (in Russian)

    Google Scholar 

  18. Vizing, V.G.: Critical graphs with a given chromatic class. Diskret. Analiz. 5, 6–17 (1965) (in Russian)

    Google Scholar 

  19. Zhanga L., Shi W., Huanga X., Li G.: New results on chromatic index critical graphs. Discrete Math. 309, 3733–3737 (2009)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Akbari.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Akbari, S., Ghanbari, M. & Nikmehr, M.J. The Chromatic Index of a Graph Whose Core is a Cycle of Order at Most 13. Graphs and Combinatorics 30, 801–819 (2014). https://doi.org/10.1007/s00373-013-1317-9

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00373-013-1317-9

Keywords

Mathematics Subject Classification (2010)