Skip to main content
Log in

An Action of the Tetrahedron Algebra on the Standard Module for the Hamming Graphs and Doob Graphs

  • Original Paper
  • Published:
Graphs and Combinatorics Aims and scope Submit manuscript

Abstract

We display an action of the tetrahedron algebra \({\boxtimes}\) on the standard module for any Hamming graph or Doob graph. To do this, we use some results of Brian Hartwig concerning tridiagonal pairs of Krawtchouk type.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bannai, E., Ito, T.: Algebraic Combinatorics I: Association Schemes. Benjamin/Cummings, Menlo Park (1984)

  2. Brouwer A.E., Cohen A.M., Neumaier A.: Distance-Regular Graphs. Springer, Berlin (1989)

    Book  MATH  Google Scholar 

  3. Doob M.: On graph products and association schemes. Utilitas Math. 1, 291–302 (1972)

    MathSciNet  MATH  Google Scholar 

  4. Egawa Y.: Characterization of H(n,q) by the parameters. J. Comb. Theory Ser. A. 31, 108–125 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  5. Go J.T.: The Terwilliger algebra of the hypercube. Eur. J. Combinorics. 23, 399–429 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  6. Godsil C.D.: Algebraic Combinatorics. Chapman and Hall, New York (1993)

    MATH  Google Scholar 

  7. Hartwig B.: The tetrahedron algebra and its finite-dimensional irreducible modules. Linear Algebra Appl. 422, 219–235 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  8. Hartwig B., Terwilliger P.: The Tetrahedron algebra, the Onsager algebra and the \({{\mathfrak{sl}_2}}\) loop algebra. J. Algebra. 308, 840–863 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  9. Ito, T., Tanabe, K., Terwilliger, P.: Some algebra related to P- and Q-polynomial association schemes. In: Codes and Association Schemes (Piscataway, NJ, 1999), pp. 167–192. American Mathematical Society, Providence (2001)

  10. Ito T., Terwilliger P.: The shape of a tridiagonal pair. J. Pure Appl. Algebra. 188, 145–160 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  11. Ito T., Terwilliger P.: Tridiagonal pairs and the quantum affine algebra \({Uq(\hat{sl_2})}\) . Ramanujan J. 13, 39–62 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  12. Ito T., Terwilliger P.: The q-tetrahedron algebra and its finite-dimensional irreducible modules. Comm. Algebra. 35, 3415–3439 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  13. Ito T., Terwilliger P.: Tridiagonal pair of Krawtchouk type. Linear Algebra Appl. 427, 218–233 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  14. Ito T., Terwilliger P.: Distance-regular graphs and the q-tetrahedron algebra. Eur. J. Combin. 30, 682–697 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  15. Kim J.: A duality between pairs of split decompositions for a Q-polynomial distance-regular graph. Discrete Math. 310, 1828–1834 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  16. Morales J.V.S.: The tetrahedron algebra and Shrikhande Graph. Manila J. Sci. 7(2), 10–18 (2012)

    Google Scholar 

  17. Pascasio A.A.: On the multiplicities of the primitive idempotents of a Q-polynomial distance-regular graph. Eur. J. Combin. 23, 1073–1078 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  18. Shrikhande S.S.: The uniqueness of the L 2 association scheme. Ann. Math. Statist. 30, 781–798 (1959)

    Article  MathSciNet  MATH  Google Scholar 

  19. Tanabe K.: The irreducible modules of the Terwilliger algebras of Doob schemes. J. Algebraic Comb. 6, 173–195 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  20. Terwilliger P.: The subconstituent algebra of an association scheme (Part I). J. Algebraic Combin. 1, 363–388 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  21. Terwilliger P.: The subconstituent algebra of an association scheme (Part II). J. Algebraic Combin. 2, 73–103 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  22. Terwilliger P.: The subconstituent algebra of an association scheme (Part III). J.Algebraic Combin. 2, 177–210 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  23. Terwilliger, P.: Two relations that generalize the q-Serre relations and the Dolan–Grady relations. In: Physics and Combinatorics 1999 (Nagoya), pp. 377–398. World Scientific Publishing, River Edge (2001)

  24. Terwilliger P.: The displacement and split decompositions for a Q-polynomial distance-regular graph. Graphs Combin. 21, 263–276 (2005)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John Vincent S. Morales.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Morales, J.V.S., Pascasio, A.A. An Action of the Tetrahedron Algebra on the Standard Module for the Hamming Graphs and Doob Graphs. Graphs and Combinatorics 30, 1513–1527 (2014). https://doi.org/10.1007/s00373-013-1366-0

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00373-013-1366-0

Keywords

Mathematics Subject Classification (2010)