Abstract
We display an action of the tetrahedron algebra \({\boxtimes}\) on the standard module for any Hamming graph or Doob graph. To do this, we use some results of Brian Hartwig concerning tridiagonal pairs of Krawtchouk type.
Similar content being viewed by others
References
Bannai, E., Ito, T.: Algebraic Combinatorics I: Association Schemes. Benjamin/Cummings, Menlo Park (1984)
Brouwer A.E., Cohen A.M., Neumaier A.: Distance-Regular Graphs. Springer, Berlin (1989)
Doob M.: On graph products and association schemes. Utilitas Math. 1, 291–302 (1972)
Egawa Y.: Characterization of H(n,q) by the parameters. J. Comb. Theory Ser. A. 31, 108–125 (1981)
Go J.T.: The Terwilliger algebra of the hypercube. Eur. J. Combinorics. 23, 399–429 (2002)
Godsil C.D.: Algebraic Combinatorics. Chapman and Hall, New York (1993)
Hartwig B.: The tetrahedron algebra and its finite-dimensional irreducible modules. Linear Algebra Appl. 422, 219–235 (2007)
Hartwig B., Terwilliger P.: The Tetrahedron algebra, the Onsager algebra and the \({{\mathfrak{sl}_2}}\) loop algebra. J. Algebra. 308, 840–863 (2007)
Ito, T., Tanabe, K., Terwilliger, P.: Some algebra related to P- and Q-polynomial association schemes. In: Codes and Association Schemes (Piscataway, NJ, 1999), pp. 167–192. American Mathematical Society, Providence (2001)
Ito T., Terwilliger P.: The shape of a tridiagonal pair. J. Pure Appl. Algebra. 188, 145–160 (2004)
Ito T., Terwilliger P.: Tridiagonal pairs and the quantum affine algebra \({Uq(\hat{sl_2})}\) . Ramanujan J. 13, 39–62 (2007)
Ito T., Terwilliger P.: The q-tetrahedron algebra and its finite-dimensional irreducible modules. Comm. Algebra. 35, 3415–3439 (2007)
Ito T., Terwilliger P.: Tridiagonal pair of Krawtchouk type. Linear Algebra Appl. 427, 218–233 (2007)
Ito T., Terwilliger P.: Distance-regular graphs and the q-tetrahedron algebra. Eur. J. Combin. 30, 682–697 (2009)
Kim J.: A duality between pairs of split decompositions for a Q-polynomial distance-regular graph. Discrete Math. 310, 1828–1834 (2010)
Morales J.V.S.: The tetrahedron algebra and Shrikhande Graph. Manila J. Sci. 7(2), 10–18 (2012)
Pascasio A.A.: On the multiplicities of the primitive idempotents of a Q-polynomial distance-regular graph. Eur. J. Combin. 23, 1073–1078 (2002)
Shrikhande S.S.: The uniqueness of the L 2 association scheme. Ann. Math. Statist. 30, 781–798 (1959)
Tanabe K.: The irreducible modules of the Terwilliger algebras of Doob schemes. J. Algebraic Comb. 6, 173–195 (1997)
Terwilliger P.: The subconstituent algebra of an association scheme (Part I). J. Algebraic Combin. 1, 363–388 (1992)
Terwilliger P.: The subconstituent algebra of an association scheme (Part II). J. Algebraic Combin. 2, 73–103 (1993)
Terwilliger P.: The subconstituent algebra of an association scheme (Part III). J.Algebraic Combin. 2, 177–210 (1993)
Terwilliger, P.: Two relations that generalize the q-Serre relations and the Dolan–Grady relations. In: Physics and Combinatorics 1999 (Nagoya), pp. 377–398. World Scientific Publishing, River Edge (2001)
Terwilliger P.: The displacement and split decompositions for a Q-polynomial distance-regular graph. Graphs Combin. 21, 263–276 (2005)
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Morales, J.V.S., Pascasio, A.A. An Action of the Tetrahedron Algebra on the Standard Module for the Hamming Graphs and Doob Graphs. Graphs and Combinatorics 30, 1513–1527 (2014). https://doi.org/10.1007/s00373-013-1366-0
Received:
Revised:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00373-013-1366-0