Skip to main content
Log in

Orientations of Graphs with Prescribed Weighted Out-Degrees

  • Original Paper
  • Published:
Graphs and Combinatorics Aims and scope Submit manuscript

Abstract

If we want to apply Galvin’s kernel method to show that a graph G satisfies a certain coloring property, we have to find an appropriate orientation of G. This motivated us to investigate the complexity of the following orientation problem. The input is a graph G and two vertex functions \({f, g : V(G) \to \mathbb{N}}\). Then the question is whether there exists an orientation D of G such that each vertex \({v \in V(G)}\) satisfies \({\sum_{u \in N_D^{+}(v)}g(u) \leq f(v)}\). On one hand, this problem can be solved in polynomial time if g(v) = 1 for every vertex \({v \in V(G)}\). On the other hand, as proved in this paper, the problem is NP-complete even if we restrict it to graphs which are bipartite, planar and of maximum degree at most 3 and to functions f, g where the permitted values are 1 and 2, only. We also show that the analogous problem, where we replace g by an edge function \({h : E(G) \to \mathbb{N}}\) and where we ask for an orientation D such that each vertex \({v \in V(G)}\) satisfies \({\sum_{e \in E_D^{+}(v)}h(e) \leq f(v)}\), is NP-complete, too. Furthermore, we prove some new results related to the (f, g)-choosability problem, or in our terminology, to the list-coloring problem of weighted graphs. In particular, we use Galvin’s theorem to prove a generalization of Brooks’s theorem for weighted graphs. We show that if a connected graph G has a block which is neither a complete graph nor an odd cycle, then G has a kernel perfect super-orientation D such that \({d_{D}^{+}(v) \leq d_G(v)-1}\) for every vertex \({v \in V(G)}\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alon, N.: Restricted colorings of graphs. In: London Mathematical Society. Lecture Notes Series, vol. 187, pp. 1–33. Cambride University Press, Cambride (1993)

  2. Alon N., Tarsi M.: Colorings and orientations of graphs. Combinatorica 12, 125–134 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  3. Bondy, J.A., Boppana, R., Siegel, A.: Unpublished (1989)

  4. Brooks R.L.: On colouring the nodes of a network. Proc. Cambridge Philos. Soc. 37, 194–197 (1941)

    Article  MathSciNet  Google Scholar 

  5. Chvátal, V.: On the computational complexity of finding a kernel. Report No. CRM-300, Centre de Recherches Mathematiques, Universite de Motreal (1973)

  6. Erdős P., Hajnal A.: On chromatic number of graphs and set-systems. Acta Math. Acad. Sci. Hung. 17, 61–99 (1966)

    Article  Google Scholar 

  7. Erdős P., Rubin A.L., Taylor H.: Choosability in graphs. Congr. Numer. XXVI, 125–157 (1979)

    Google Scholar 

  8. Fleischner H., Stiebitz M.: A solution to a colouring problem of P. Erdős. Discrete Math. 101, 39–48 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  9. Frank, A., Gyárfas, A.: How to orient a graph? In: Combinatorics (Proc. 5th Hung. Colloq., Keszthely, 1976), vol. 1. Colloq. Math. Soc. János Bolyai, vol. 18, pp. 353–364. North-Holland, Amsterdam (1978)

  10. Frank, A.: Connectivity and network flows. In: Handbook of Combinatorics, vol. I. In: Graham, R.L., Grötschel, M., Lovász, L., (eds.) North-Holland, Amsterdam, pp. 111–178 (1995)

  11. Fulkerson D.R., Gross O.A.: Incidence matrices and interval graphs. Pac. J. Math. 15, 835–855 (1965)

    Article  MATH  MathSciNet  Google Scholar 

  12. Gallai, T.: Kritische Graphen I, II. Publ. Math. Inst. Hungar. Acad. Sci. 8, 165–192 and 373–395 (1963)

  13. Gallai, T.: On directed paths and circuits. In: Erdős, P., Katona, G. (eds.) Theory of Graphs Proc. Colloqu., Tihany, 1966. Academic Press, New York, pp. 115–118 (1968)

  14. Galvin F.: The list chromatic index of a bipartite multigraph. J. Combin. Theory Ser. B 63, 153–158 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  15. Hakimi S.L.: On the degrees of the vertices of a digraph. J. Frankl. Inst. 279, 290–308 (1965)

    Article  MATH  MathSciNet  Google Scholar 

  16. Hall P.: On representatives of subsets. J. Lond. Math. Soc. 10, 26–30 (1935)

    Google Scholar 

  17. Hasse, M.: Zur algebraischen Begründung der Graphentheorie I. Math. Nachr. 28, 275–290 (1964/1965)

    Google Scholar 

  18. Hladký J., Král’ D., Schauz U.: Brooks theorem via the Alon-Tarsi-theorem. Discrete Math. 310, 3426–3428 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  19. Kratochví l, J., Tuza, Z., Voigt, M.: New trends in the theory of graph colorings: choosability and list coloring In: DIMACS Series in Discrete Mathematics and Theoretical Computer Science, vol. 49, pp. 183– 197. American Mathematical Society (1999)

  20. Lovász, L.: Perfect graphs. In: Beineke, L.W., Wilson, R.J. (eds.) Selected Topics in Graph Theory, vol. 2, pp. 55–88. Academic Press, New York (1983)

  21. Middendorf M., Pfeiffer F.: On the complexity of the disjoint paths problem. Combinatorica 13, 97–107 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  22. Prowse A., Woodall D.R.: Choosability of powers of circuits. Graphs Combin. 19, 137–144 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  23. Richardson M.: Solutions of irreflexive relations. Ann. Math. 58, 573–580 (1953)

    Article  MATH  Google Scholar 

  24. Roy B.: Nombre chromatique et plus longs chemins d’un graphe. Rev. Francaise Informat. Recherche Opérationelle 1, 129–132 (1967)

    MATH  Google Scholar 

  25. Tesman, B.: T-colorings, list T-colorings, and set T-colorings of graphs. Ph.D. Thesis, Rutgers University, New Brunswick, New Jersey (1989)

  26. Tuza Z.: Graph coloring in linear time. J. Combin. Theory Ser. B 55, 236–243 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  27. Tuza Z.: Graph colorings with local constraints—a survey. Discuss. Math. Graph Theory 17, 161–228 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  28. Tuza Z., Voigt M.: On a conjecture of Erdős, Rubin and Taylor. Tatra Mt. Math. Publ. 9, 69–82 (1996)

    MATH  MathSciNet  Google Scholar 

  29. Vizing, V.G.: Colouring the vertices of a graph in prescribed colours (in Russian) Metody Diskret. Diskret. Analiz. No 29, Metody Diskret. Anal. v Teorii Kodov i Skhem, vol. 101, pp. 3–10 (1976)

  30. Woodall D.R.: Edge-choosability of multicircuits. Discrete Math. 202, 271–277 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  31. Woodall, D.R.: List colourings of graphs. In: London Mathematical Society. Lecture Notes Series, vol. 288, pp. 1–33. Cambride University Press, Cambride (2001)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Stiebitz.

Additional information

Research supported in part by the DAAD and by the Hungarian Scientific Research Fund, grant OTKA T-81493.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stiebitz, M., Tuza, Z. & Voigt, M. Orientations of Graphs with Prescribed Weighted Out-Degrees. Graphs and Combinatorics 31, 265–280 (2015). https://doi.org/10.1007/s00373-013-1382-0

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00373-013-1382-0

Keywords

Navigation