Skip to main content
Log in

\(F\)-Factors in Hypergraphs Via Absorption

  • Original Paper
  • Published:
Graphs and Combinatorics Aims and scope Submit manuscript

Abstract

Given integers \(n \ge k >l \ge 1\) and a \(k\)-graph \(F\) with \(|V(F)|\) divisible by \(n\), define \(t_l^k(n,F)\) to be the smallest integer \(d\) such that every \(k\)-graph \(H\) of order \(n\) with minimum \(l\)-degree \(\delta _l(H) \ge d \) contains an \(F\)-factor. A classical theorem of Hajnal and Szemerédi in (Proof of a Conjecture of P. Erdős, pp. 601–623, 1969) implies that \(t^2_1(n,K_t) = (1-1/t)n\) for integers \(t\). For \(k \ge 3\), \(t^k_{k-1}(n,K_k^k)\) (the \(\delta _{k-1}(H)\) threshold for perfect matchings) has been determined by Kühn and Osthus in (J Graph Theory 51(4):269–280, 2006) (asymptotically) and Rödl et al. in (J Combin Theory Ser A 116(3):613–636, 2009) (exactly) for large \(n\). In this paper, we generalise the absorption technique of Rödl et al. in (J Combin Theory Ser A 116(3):613–636, 2009) to \(F\)-factors. We determine the asymptotic values of \(t^k_1(n,K_k^k(m))\) for \(k = 3,4\) and \(m \ge 1\). In addition, we show that for \(t>k = 3\) and \(\gamma >0, t^3_{2}(n,K_t^3) \le ( 1- \frac{2}{t^2-3t+4} + \gamma ) n\) provided \(n\) is large and \(t | n\). We also bound \(t^3_{2}(n,K_t^3)\) from below. In particular, we deduce that \(t^3_2(n,K_4^3) = (3/4+o(1))n\) answering a question of Pikhurko in (Graphs Combin 24(4):391–404, 2008). In addition, we prove that \(t^k_{k-1}(n,K_t^k) \le (1- \left( {\begin{array}{c}t-1\\ k-1\end{array}}\right) ^{-1} + \gamma )n\) for \(\gamma >0, k \ge 6\) and \(t \ge (3+ \sqrt{5})k/2\) provided \(n\) is large and \(t | n\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alon, N., Spencer, J.H.: The probabilistic method, 2nd edn. Wiley-Interscience Series in Discrete Mathematics and Optimization. Wiley-Interscience [John Wiley & Sons], New York, 2000. With an appendix on the life and work of Paul Erdős

  2. Corrádi, K., Hajnal, A.: On the maximal number of independent circuits in a graph. Acta Math. Acad. Sci. Hungar. 14, 423–439 (1963)

    Article  MATH  MathSciNet  Google Scholar 

  3. Czygrinow, A., DeBiasio, L., Nagle, B.: Tiling 3-uniform hypergraphs with \(K_4^3-2e.\) J. Graph Theory 75, 124–136 (2014). Arxiv, preprint arXiv:1108.4140

  4. Dirac, G.A.: Some theorems on abstract graphs. Proc. Lond. Math. Soc. 2(3), 69–81 (1952)

    Article  MATH  MathSciNet  Google Scholar 

  5. Duke, R.A., Lefmann, H., Rödl, V.: On uncrowded hypergraphs. In: Proceedings of the Sixth International Seminar on Random Graphs and Probabilistic Methods in Combinatorics and Computer Science, “Random Graphs ’93” (Poznań, 1993), vol. 6, pp. 209–212 (1995)

  6. Erdős, P.: On extremal problems of graphs and generalized graphs. Isr. J. Math. 2, 183–190 (1964)

    Article  Google Scholar 

  7. Erdős, P., Simonovits, M.: Supersaturated graphs and hypergraphs. Combinatorica 3(2), 181–192 (1983)

    Article  MathSciNet  Google Scholar 

  8. Grable, D.A., Phelps, K.T., Rödl, V.: The minimum independence number for designs. Combinatorica 15(2), 175–185 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  9. Hajnal, A., Szemerédi, E.: Proof of a Conjecture of P. Erdős. In: Combinatorial Theory and Its Applications, II (Proc. Colloq., Balatonfüred, 1969), vol. 1970, pp. 601–623. North-Holland, Amsterdam (1969)

  10. Hàn, H., Person, Y., Schacht, M.: On perfect matchings in uniform hypergraphs with large minimum vertex degree. SIAM J. Discret. Math. 23(2), 732–748 (2009)

    Article  MATH  Google Scholar 

  11. Keevash, P., Mycroft, R.: A geometric theory for hypergraph matching. Mem. Am. Math. Soc. (2011, to appear). arXiv:1108.1757

  12. Khan, I.: Perfect matching in 3 uniform hypergraphs with large vertex degree. SIAM J. Discret. Math. 27, 1021–1039 (2013)

    Google Scholar 

  13. Khan, I.: Perfect matchings in 4-uniform hypergraphs (2011). ArXiv e-prints

  14. Kierstead, H., Mubayi, D.: Toward a Hajnal–Szemeredi theorem for hypergraphs (2010). Arxiv, preprint arXiv:1005.4079

  15. Kostochka, A., Mubayi, D., Rödl, V., Tetali, P.: On the chromatic number of set systems. Random Struct. Algorithms 19(2), 87–98 (2001)

    Article  MATH  Google Scholar 

  16. Kühn, D., Osthus, D.: Loose Hamilton cycles in 3-uniform hypergraphs of high minimum degree. J. Combin. Theory Ser. B 96(6), 767–821 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  17. Kühn, D., Osthus, D.: Matchings in hypergraphs of large minimum degree. J. Graph Theory 51(4), 269–280 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  18. Kühn, D., Osthus, D.: Embedding large subgraphs into dense graphs. In: Surveys in Combinatorics 2009. London Mathematical Society Lecture Note Series, vol. 365, pp. 137–167. Cambridge Univ. Press, Cambridge (2009)

  19. Kühn, D., Osthus, D., Treglown, A.: Matchings in 3-uniform hypergraphs. J. Combin. Theory Ser. B 103(2), 291–305 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  20. Lo, A., Markström, K.: A multipartite version of the Hajnal–Szemerédi theorem for graphs and hypergraphs. Combin. Probab. Comput. 22(1), 97–111 (2012)

    Article  Google Scholar 

  21. Lo, A., Markström, K.: Minimum codegree threshold for \((K_4^3-e)\)-factors. J. Combin. Theory Ser. A 120(3), 708–721 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  22. Pikhurko, O.: Perfect matchings and \(K^{3}_{4}\)-tilings in hypergraphs of large codegree. Graphs Combin. 24(4), 391–404 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  23. Rödl, V., Ruciński, A.: Dirac-type questions for hypergraphs—a survey (or more problems for Endre to solve). In: An Irregular Mind (Szemerédi is 70), vol. 21. Bolyai Soc. Math. Studies (2010)

  24. Rödl, V., Ruciński, A., Szemerédi, E.: Perfect matchings in large uniform hypergraphs with large minimum collective degree. J. Combin. Theory Ser. A 116(3), 613–636 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  25. Yuster, R.: Combinatorial and computational aspects of graph packing and graph decomposition. Comput. Sci. Rev. 1(1), 12–26 (2007)

    Article  MATH  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Jie Han and the anonymous referees for the helpful comments and the careful reviews.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Allan Lo.

Additional information

Allan Lo was supported by the ERC, grant no. 258345.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lo, A., Markström, K. \(F\)-Factors in Hypergraphs Via Absorption. Graphs and Combinatorics 31, 679–712 (2015). https://doi.org/10.1007/s00373-014-1410-8

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00373-014-1410-8

Keywords

Mathematics Subject Classification (2010)

Navigation