Skip to main content
Log in

On Improperly Chromatic-Choosable Graphs

  • Original Paper
  • Published:
Graphs and Combinatorics Aims and scope Submit manuscript

Abstract

A graph is \(d\)-improperly chromatic-choosable if its \(d\)-improper choice number coincides with its \(d\)-improper chromatic number. For fixed \(d\ge 0\), we show that if the \(d\)-improper chromatic number is close enough to \(\frac{1}{d+1}\) of the number of vertices in \(G\), then \(G\) is \(d\)-improperly chromatic-choosable. As a consequence, we show that the join \(G + K_n\) is \(d\)-improperly chromatic-choosable when \(n\ge (|V(G)|+d)^2\). We also raise a conjecture on \(d\)-improper chromatic-choosability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Andrews, J.A., Jacobson, M.S.: On a generalization of chromatic number. Congr. Numer. 47, 33–48 (1985)

    MathSciNet  Google Scholar 

  2. Cowen, L.J., Cowen, R.H., Woodall, D.R.: Defective colorings of graphs in surfaces: partitions into subgraphs of bounded valency. J. Graph Theory 10(2), 187–195 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  3. Carraher, J., Loeb, S., Mahoney, T., Puleo, G., Tsai, M., West, D.: Extending graph choosability results to paintability. http://www.math.unl.edu/s-jcarrah1/paintability (2012)

  4. Eaton, N., Hull, T.: Defective list colorings of planar graphs. Bull. Inst. Combin. Appl. 25, 79–87 (1999)

    MathSciNet  MATH  Google Scholar 

  5. Enomoto, H., Ohba, K., Ota, K., Sakamoto, J.: Choice number of some complete multi-partite graphs. Discret. Math. 244(1), 55–66 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  6. Erdős, P., Rubin, A.L., Taylor, H.: Choosability in graphs. Congr. Numer. 26, 125–157 (1979)

    Google Scholar 

  7. Huang, P., Wong, T., Zhu, X.: Application of polynomial method to on-line list colouring of graphs. Eur. J. Combin. 33(5), 872–883 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  8. Kang, R.J.: Improper choosability and property B. J. Graph Theory 73(3), 342–353 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  9. Kozik, J., Micek, P., Zhu, X.: Towards an on-line version of Ohba’s conjecture. Eur. J. Combin. 36, 110–121 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  10. Lovász, L.: On decompositions of graphs. Stud. Sci. Math. Hungar. 1, 237–238 (1966)

    MATH  Google Scholar 

  11. Noel, J., Reed, B., Wu, H.: A proof of a conjecture of Ohba. preprint arXiv:1211.1999 (2012)

  12. Ohba, K.: On chromatic-choosable graphs. J. Graph Theory 40(2), 130–135 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  13. Škrekovski, R.: List improper colorings of planar graphs. Combin. Probab. Comput. 8(3), 293–299 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  14. Vizing, V.G.: Coloring the vertices of a graph in prescribed colors (in Russian). Diskret. Anal. 29(3), 3–10 (1976)

    MathSciNet  MATH  Google Scholar 

  15. Zhen, L., Wu, B.: List point arboricity of dense graphs. Graphs Combin. 25(1), 123–128 (2009)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

We thank the referees for their constructive comments. In particular, the current form of Conjecture 1 as a natural generalization of Ohba’s conjecture is inspired by one of the referees.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhidan Yan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yan, Z., Wang, W. & Xue, N. On Improperly Chromatic-Choosable Graphs. Graphs and Combinatorics 31, 1807–1814 (2015). https://doi.org/10.1007/s00373-014-1438-9

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00373-014-1438-9

Keywords

Mathematics Subject Classification (2000)

Navigation