Skip to main content
Log in

A Weaker Version of a Conjecture on List Vertex Arboricity of Graphs

  • Original Paper
  • Published:
Graphs and Combinatorics Aims and scope Submit manuscript

Abstract

The vertex arboricity \(\rho (G)\) of a graph \(G\) is the minimum number of colors to color \(G\) such that each color class induces a forest. The list vertex arboricity \(\rho _l(G)\) is the list-coloring version of this concept. Zhen and Wu conjectured that \(\rho _l(G)=\rho (G)\) whenever \(|V(G)|\le 3\rho (G)\). In this paper, we prove the weaker version of the conjecture obtained by replacing \(3\rho (G)\) with \(\frac{5}{2}\rho (G)+\frac{1}{2}\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Borodin, O.V., Ivanova, A.O.: Planar graphs without 4-cycles adjacent to 3-cycles are list vertex 2-arborable. J. Graph Theory 62, 234–240 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  2. Borodin, O.V., Kostochka, A.V., Toft, B.: Variable degeneracy: extensions of Brooks and Gallais theorems. Discrete Math. 214, 101–112 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  3. Chartrand, G., Kronk, H.V.: The point-arboricity of planar graphs. J. Lond. Math. Soc. 44, 612–616 (1969)

    Article  MathSciNet  MATH  Google Scholar 

  4. Chartrand, G., Kronk, H.V., Wall, C.E.: The point-arboricity of a graph. Isr. J. Math. 6, 169–175 (1968)

    Article  MathSciNet  MATH  Google Scholar 

  5. Erdős, P., Rubin, A.L., Taylor, H.: Choosability in graphs. Cong. Numer. 26, 125–157 (1979)

    Google Scholar 

  6. Noel, J.A.; Reed, B.A.; Wu, H.: A proof of a conjecture of Ohba (preprint). arXiv: 1211.1999 (2012)

  7. Ohba, K.: On chromatic-choosable graphs. J. Graph Theory 40, 130–135 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  8. Raspaud, A., Wang, W.: On the vertex-arboricity of planar graphs. Eur. J. Comb. 29, 1064–1075 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  9. Reed, B., Sudakov, B.: List colouring when the chromatic number is close to the order of the graph. Combinatorica 25, 117–123 (2004)

    Article  MathSciNet  Google Scholar 

  10. Vizing, V.G.: Coloring the vertices of a graph in prescribed colors. Diskret Analiz 29, 3–10 (1976)

    MathSciNet  MATH  Google Scholar 

  11. Xue, N., Wang, W.: The list point arboricity of some complete multi-partite graphs. Ars Comb. 105, 457–462 (2012)

    MathSciNet  MATH  Google Scholar 

  12. Xue, N., Wu, B.: List point arboricity of graphs. Discrete Math. Algorithms Appl. 4, 1250027 (2012)

  13. Zhen, L., Wu, B.: List point arboricity of dense graphs. Graphs Comb. 25, 123–128 (2009)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

The authors are grateful to the referees for their careful reading and valuable comments. This work is supported by NSFC (11161046), Xinjiang Young Talent Project (2013721012).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Baoyindureng Wu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, W., Wu, B., Yan, Z. et al. A Weaker Version of a Conjecture on List Vertex Arboricity of Graphs. Graphs and Combinatorics 31, 1779–1787 (2015). https://doi.org/10.1007/s00373-014-1466-5

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00373-014-1466-5

Keywords

Mathematics Subject Classification

Navigation