Skip to main content
Log in

On Bounding the Difference of the Maximum Degree and the Clique Number

  • Original Paper
  • Published:
Graphs and Combinatorics Aims and scope Submit manuscript

Abstract

For every \(k \in {\mathbb {N}}_0\), we consider graphs in which for any induced subgraph, \(\Delta \le \omega - 1 + k\) holds, where \(\Delta \) is the maximum degree and \(\omega \) is the maximum clique number of the subgraph. We give a finite forbidden induced subgraph characterization for every \(k\). As an application, we find some results on the chromatic number \(\chi \) of a graph. B. Reed stated the conjecture that for every graph, \(\chi \le \lceil \frac{\Delta + \omega + 1 }{2}\rceil \) holds. Since this inequality is fulfilled by graphs in which \(\Delta \le \omega + 2\) holds, our results provide a hereditary graph class for which the conjecture holds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Chudnovsky, M., Robertson, N., Seymour, P.D., Thomas, R.: The strong perfect graph theorem. Ann. Math. 164, 51–229 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  2. Toft, B.: Coloring, stable sets and perfect graphs. In: Graham, R., Grötschel, M., Lovász, L. (eds.) Handbook of Combinatorics, vol. I, pp. 233–288. North-Holland, Amsterdam (1995)

  3. Golumbic, M.C.: Algorithmic Graph Theory and Perfect Graphs. Academic Press, New York (1980)

    MATH  Google Scholar 

  4. Grötschel, M., Lovász, L., Schrijver, A.: Polynomial algorithms for perfect graphs. In: Topics on Perfect Graphs. North-Holland Mathematics Studies, vol. 88, pp. 325–356 (1984)

  5. Brooks, R.L.: On colouring the nodes of a network. Math. Proc. Camb. Philos. Soc. 37, 194–197 (1941)

    Article  MathSciNet  Google Scholar 

  6. Mycielski, J.: Sur les coloriages des graphes. Colloq. Math. 3, 161–162 (1955)

    MathSciNet  MATH  Google Scholar 

  7. Reed, B.: Omega, delta, and chi. J. Graph Theory 27, 177–212 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  8. Hajnal, A.: A theorem on k-saturated graphs. Can. J. Math. 17, 720–724 (1965)

    Article  MathSciNet  MATH  Google Scholar 

  9. Christofides, D., Edwards, K., King, A.D.: A note on hitting maximum and maximal cliques with a stable set. J. Graph Theory 73, 327–341 (2013)

    Article  MathSciNet  Google Scholar 

  10. Metelsky, Y., Tyshkevich, R.: Line graphs of Helly hypergraphs. SIAM J. Discret. Math. 16(3), 438–448 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  11. Kloks, T., Kratsch, D., Müller, G.: Dominoes. Lecture Notes in Computer Science, vol. 903, pp. 106–120 (1995)

  12. Hall, P.: On representatives of subsets. J. Lond. Math. Soc. 10(1), 26–30 (1935)

  13. King, A.: Claw-free graphs and two conjectures on omega, delta, and chi. Ph.D. dissertation, School of Computer Science, McGill University, Montreal, Canada (2009)

  14. Aravind, N.R., Karthick, T., Subramanian, C.R.: Bounding \(\chi \) in terms of \(\omega \) and \(\Delta \) for some classes of graphs. Discret. Math. 311, 911–920 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  15. Chudnovsky, M., King, A.D., Plumettaz, M., Seymour, P.: A local strengthening of Reed’s \(\omega \), \(\Delta \), \(\chi \) conjecture for quasi-line graphs. SIAM J. Discret. Math. 27(1), 95–108 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  16. Farzad, B., Molloy, M., Reed, B.: \((\Delta -k)\)-critical graphs. J. Comb. Theory Ser. B 93, 173–185 (2005)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

We want to thank the reviewers for their many helpful comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vera Weil.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Schaudt, O., Weil, V. On Bounding the Difference of the Maximum Degree and the Clique Number. Graphs and Combinatorics 31, 1689–1702 (2015). https://doi.org/10.1007/s00373-014-1468-3

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00373-014-1468-3

Keywords

Navigation