Skip to main content
Log in

Total Domination Edge Critical Graphs with Total Domination Number Three and Many Dominating Pairs

  • Original Paper
  • Published:
Graphs and Combinatorics Aims and scope Submit manuscript

Abstract

A graph \(G\) is diameter-2-critical if its diameter is two and the deletion of any edge increases the diameter. Murty and Simon conjectured that the number of edges in a diameter-2-critical graph \(G\) of order \(n\) is at most \(\lfloor n^2/4 \rfloor \) and that the extremal graphs are the complete bipartite graphs \(K_{{\lfloor n/2 \rfloor },{\lceil n/2 \rceil }}\). A graph is \(3_t\)-edge-critical, abbreviated \(3_tEC\), if its total domination number is 3 and the addition of any edge decreases the total domination number. It is known that proving the Murty–Simon Conjecture is equivalent to proving that the number of edges in a \(3_tEC\) graph of order \(n\) is greater than \(\lceil n(n-2)/4 \rceil \). We study a family \(\mathcal{F}\) of \(3_tEC\) graphs of diameter 2 for which every pair of nonadjacent vertices dominates the graph. We show that the graphs in \(\mathcal{F}\) are precisely the bull-free \(3_tEC\) graphs and that the number of edges in such graphs is at least \(\lfloor (n^2 - 4)/4 \rfloor \), proving the conjecture for this family. We characterize the extremal graphs, and conjecture that this improved bound is in fact a lower bound for all \(3_tEC\) graphs of diameter 2. Finally we slightly relax the requirement in the definition of \(\mathcal{F}\)—instead of requiring that all pairs of nonadjacent vertices dominate to requiring that only most of these pairs dominate—and prove the Murty–Simon equivalent conjecture for these \(3_tEC\) graphs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Bondy, J.A., Murty, U.S.R.: Extremal graphs of diameter two with prescribed minimum degree. Stud. Sci. Math. Hung. 7, 239–241 (1972)

    MathSciNet  Google Scholar 

  2. Caccetta, L., Häggkvist, R.: On diameter critical graphs. Discret. Math. 28(3), 223–229 (1979)

    Article  MATH  Google Scholar 

  3. Chen, Y.-C., Füredi, Z.: Minimum vertex-diameter-2-critical graphs. J. Graph Theory 50(4), 293–315 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  4. Chudnovsky, M., Safra, S.: The Erdös–Hajnal conjecture for bull-free graphs. J. Comb. Theory Ser. B 98, 1301–1310 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  5. Chudnovsky, M.: The structure of bull-free graphs I-three-edge-paths with centers and anticenters. J. Comb. Theory Ser. B 102, 233–251 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  6. Chudnovsky, M.: The structure of bull-free graphs II and III-A summary. J. Comb. Theory Ser. B 102, 252–282 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  7. Chudnovsky, M., Robertson, N., Seymour, P., Thomas, R.: The strong perfect graph theorem. Ann. Math. 164, 51–229 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  8. Chvátal, V., Sbihi, N.: Bull-free Berge graphs are perfect. Graphs Comb. 3, 127–139 (1987)

    Article  MATH  Google Scholar 

  9. Erdös, P., Hajnal, A.: Ramsey-type theorems. Discret. Appl. Math. 25, 37–52 (1989)

    Article  MATH  Google Scholar 

  10. Fan, G.: On diameter 2-critical graphs. Discret. Math. 67, 235–240 (1987)

    Article  MATH  Google Scholar 

  11. Füredi, Z.: The maximum number of edges in a minimal graph of diameter 2. J. Graph Theory 16, 81–98 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  12. Hanson, D., Wang, P.: A note on extremal total domination edge critical graphs. Util. Math. 63, 89–96 (2003)

    MathSciNet  MATH  Google Scholar 

  13. Haynes, T.W., Henning, M.A.: A characterization of diameter-2-critical graphs with no antihole of length four. Cent. Eur. J. Math. 10(3), 1125–1132 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  14. Haynes, T.W., Henning, M.A.: A characterization of diameter-2-critical graphs whose complements are diamond-free. Discret. Appl. Math. 160, 1979–1985 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  15. Haynes, T.W., Henning, M.A.: A characterization of \(P_5\)-free, diameter-2-critical graphs. Discret. Appl. Math. 169, 135–139 (2014)

  16. Haynes, T.W., Henning, M.A., van der Merwe, L.C., Yeo, A.: On a conjecture of Murty and Simon on diameter two critical graphs. Discret. Math. 311, 1918–1924 (2011)

    Article  MATH  Google Scholar 

  17. Haynes, T.W., Henning, M.A., van der Merwe, L.C., Yeo, A.: Progress on the Murty–Simon conjecture on diameter-2-critical graphs: a survey. J. Comb. Optim. (2013). doi:10.1007/s10878-013-9651-7

  18. Haynes, T.W., Henning, M.A., Yeo, A.: A proof of a conjecture on diameter two critical graphs whose complements are claw-free. Discret. Optim. 8, 495–501 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  19. Haynes, T.W., Henning, M.A., Yeo, A.: On a conjecture of Murty and Simon on diameter two critical graphs II. Discret. Math. 312, 315–323 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  20. Haynes, T.W., Mynhardt, C.M., van der Merwe, L.C.: Criticality index of total domination. Congr. Numer. 131, 67–73 (1998)

    MathSciNet  MATH  Google Scholar 

  21. Haynes, T.W., Mynhardt, C.M., van der Merwe, L.C.: Total domination edge critical graphs. Util. Math. 54, 229–240 (1998)

    MathSciNet  MATH  Google Scholar 

  22. Henning, M.A.: Recent results on total domination in graphs: a survey. Discret. Math. 309, 32–63 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  23. Henning, M.A., Yeo, A.: Total Domination in Graphs. Springer Monographs in Mathematics (2013). ISBN: 978-1-4614-6524-9 (Print) 978-1-4614-6525-6 (Online)

  24. Murty, U.S.R.: On critical graphs of diameter \(2\). Math. Mag. 41, 138–140 (1968)

    Article  MathSciNet  MATH  Google Scholar 

  25. Reed, B., Sbihi, N.: Recognizing bull-free perfect graphs. Graphs Comb. 11, 171–178 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  26. Simmons, J.: Closure operations and Hamiltonian properties of independent and total domination critical graphs. Ph.D. thesis, University of Victoria (2005)

  27. Turán, P.: Eine Extremalaufgabe aus der Graphentheorie (in Hungarian). Mat. Fiz. Lapok 48, 436–452 (1941)

  28. van der Merwe, L.C., Mynhardt, C.M., Haynes, T.W.: Total domination edge critical graphs with minimum diameter. Ars Comb. 66, 79–96 (2003)

    MATH  Google Scholar 

Download references

Acknowledgments

Research of the first and second authors is supported by the Ministry of Education and Science, Spain, and the European Regional Development Fund (ERDF) under project MTM2011-28800-C02-02 and under the Catalonian Government project 1298 SGR2009. Research of the second author is also partially supported by a Juan de la Cierva Postdoctoral Fellowship. Research of the third and fourth authors is supported in part by the University of Johannesburg, and research of the fourth author is supported in part by the South African National Research Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Teresa W. Haynes.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Balbuena, C., Hansberg, A., Haynes, T.W. et al. Total Domination Edge Critical Graphs with Total Domination Number Three and Many Dominating Pairs. Graphs and Combinatorics 31, 1163–1176 (2015). https://doi.org/10.1007/s00373-014-1469-2

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00373-014-1469-2

Keywords

Mathematics Subject Classification

Navigation