Skip to main content
Log in

On Extremal Graphs with at Most \(\ell \) Internally Disjoint Steiner Trees Connecting Any \(n-1\) Vertices

  • Original Paper
  • Published:
Graphs and Combinatorics Aims and scope Submit manuscript

Abstract

The maximum local connectivity was first introduced by Bollobás. The problem of determining the maximum number of edges in a graph with \(\overline{\kappa }\le \ell \) has been studied extensively. We consider a generalization of the above concept and problem. For \(S\subseteq V(G)\) and \(|S|\ge 2\), the generalized local connectivity \(\kappa (S)\) is the maximum number of internally disjoint trees connecting \(S\) in \(G\). The parameter \(\overline{\kappa }_k(G)=\max \{\kappa (S)\,|\,S\subseteq V(G),|S|=k\}\) is called the maximum generalized local connectivity of \(G\). In this paper the problem of determining the largest number \(f(n;\overline{\kappa }_k\le \ell )\) of edges for graphs of order \(n\) that have maximum generalized local connectivity at most \(\ell \) is considered. The exact value of \(f(n;\overline{\kappa }_k\le \ell )\) for \(k=n,n-1\) is determined. For a general \(k\), we construct a graph to obtain a sharp lower bound.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Bártfai P.: Solution of a problem proposed by P. Erdös (in Hungarian). Mat. Lapok 11, 175–176 (1960)

  2. Beineke, L., Wilson, R.: Topics in Structural Graph Theory. Cambrige University Press, Cambrige (2013)

    MATH  Google Scholar 

  3. Beineke, L., Oellermann, O., Pippert, R.: The average connectivity of a graph. Discrete Math. 252, 31–45 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  4. Bollobás, B.: Extremal Graph Theory. Acdemic Press, New York (1978)

    MATH  Google Scholar 

  5. Bollobás, B.: On graphs with at most three independent paths connecting any two vertices. Studia Sci. Math. Hungar 1, 137–140 (1966)

    MathSciNet  MATH  Google Scholar 

  6. Bollobás, B.: Cycles and semi-topological configurations. In: Alavi, Y., Lick, D.R. (eds.) Theory and Applications of Graphs. Lecture Notes in Maths, vol. 642, pp. 66–74. Springer, Berlin (1978)

    Chapter  Google Scholar 

  7. Bondy, J.A., Murty, U.S.R.: Graph Theory, GTM 244. Springer, Berlin (2008)

    Book  Google Scholar 

  8. Chartrand, G., Kapoor, S., Lesniak, L., Lick, D.: Generalized connectivity in graphs. Bull. Bombay Math. Colloq. 2, 1–6 (1984)

    Google Scholar 

  9. Chartrand, G., Okamoto, F., Zhang, P.: Rainbow trees in graphs and generalized connectivity. Networks 55(4), 360–367 (2010)

    MathSciNet  MATH  Google Scholar 

  10. Day, D., Oellermann, O., Swart, H.: The \(\ell \)-connectivity function of trees and complete multipartite graphs. J. Combin. Math. Combin. Comput. 10, 183–192 (1991)

    MathSciNet  MATH  Google Scholar 

  11. Gusfield, D.: Connectivity and edge-disjoint spanning trees. Inform. Process. lett. 16, 87–89 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  12. Hager, M.: Pendant tree-connectivity. J. Combin. Theory Ser B 38, 179–189 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  13. Hind, H., Oellermann, O.: Menger-type results for three or more vertices. Congressus Numerantium 113, 179–204 (1996)

    MathSciNet  MATH  Google Scholar 

  14. Jain, K., Mahdian, M., Salavatipour, M.: Packing Steiner trees. In: Proc. of the 14th \(ACM\)-\(SIAM\) symposium on Discterte Algorithms, Baltimore, pp. 266–274 (2003)

  15. Kriesell, M.: Edge-disjoint trees containing some given vertices in a graph. J. Combin. Theory Ser. B 88, 53–65 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  16. Kriesell, M.: Edge-disjoint Steiner trees in graphs without large bridges. J. Graph Theory 62, 188–198 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  17. Lau, L.: An approximate max-Steiner-tree-packing min-Steiner-cut theorem. Combinatorica 27, 71–90 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  18. Leonard, J.: On a conjecture of Bollobás and Edrös. Period. Math. Hungar. 3, 281–284 (1973)

    Article  MathSciNet  MATH  Google Scholar 

  19. Leonard, J.: On graphs with at most four edge-disjoint paths connecting any two vertices. J. Combin. Theory Ser. B 13, 242–250 (1972)

    Article  MathSciNet  MATH  Google Scholar 

  20. Leonard, J.: Graphs with 6-ways. Canad. J. Math. 25, 687–692 (1973)

    Article  MathSciNet  MATH  Google Scholar 

  21. Li, H., Li, X., Mao, Y.: On extremal graphs with at most two internally disjoint Steiner trees connecting any three vertices. Bull. Malays. Math. Sci. Soc. (2) 37(3), 747–756 (2014)

  22. Li, H., Li, X., Mao, Y., Sun, Y.: Note on the generalized 3-connectivity. Ars Combin. 114, 193–202 (2014)

    MathSciNet  MATH  Google Scholar 

  23. Li, H., Li, X., Sun, Y.: The generalied 3-connectivity of Cartesian product graphs. Discrete Math. Theor. Comput. Sci. 14(1), 43–54 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  24. Li S., Li W., Li X.: The generalized connectivity of complete equipartition \(3\)-partite graphs. Bull. Malays. Math. Sci. Soc. (2) 37(1), 103–121 (2014)

  25. Li, S., Li, X.: Note on the hardness of generalized connectivity. J. Combin. Optim. 24, 389–396 (2012)

    Article  MATH  Google Scholar 

  26. Li, S., Li, X., Zhou, W.: Sharp bounds for the generalized connectivity \(\kappa _3(G)\). Discrete Math. 310, 2147–2163 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  27. Li, X., Mao, Y.: The generalized 3-connectivity of lexicographic product graphs. Discrete Math. Theor. Comput. Sci. 16(1), 339–354 (2014)

    MathSciNet  MATH  Google Scholar 

  28. Li, X., Mao, Y., Sun, Y.: On the generalized (edge-)connectivity. Australas. J. Combin. 58(2), 304–319 (2014)

    MathSciNet  MATH  Google Scholar 

  29. Mader, W.: Ein Extremalproblem des Zusammenhangs in Graphen. Math. Z. 131, 223–231 (1973)

    Article  MathSciNet  MATH  Google Scholar 

  30. Mader, W.: Grad und lokaler Zusammenhang in endlichen Graphen. Math. Ann. 205, 9–11 (1973)

    Article  MathSciNet  MATH  Google Scholar 

  31. Mader, W.: Über die Maximalzahl kantendisjunkter A-Wege. Arch. Math. 30, 325–336 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  32. Mader, W.: Über die Maximalzahl kreuzungsfreier H-Wege. Arch. Math. 31, 387–402 (1978)

    Article  MathSciNet  Google Scholar 

  33. Nash-Williams, CStJA: Edge-disjoint spanning trees of finite graphs. J. Lond. Math. Soc. 36, 445–450 (1961)

    Article  MathSciNet  MATH  Google Scholar 

  34. Oellermann, O.: Connectivity and edge-connectivity in graphs: a survey. Congressus Numerantium 116, 231–252 (1996)

    MathSciNet  MATH  Google Scholar 

  35. Oellermann, O.: On the \(\ell \)-connectivity of a graph. Graphs Combin. 3, 285–299 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  36. Oellermann, O.: A note on the \(\ell \)-connectivity function of a graph. Congressus Numerantium 60, 181–188 (1987)

    MathSciNet  Google Scholar 

  37. Sørensen B., Thomassen C.: On \(k\)-rails in graphs. J. Combin. Theory 17, 143–159 (1974)

  38. Tutte, W.: On the problem of decomposing a graph into \(n\) connected factors. J. Lond. Math. Soc. 36, 221–230 (1961)

    Article  MathSciNet  MATH  Google Scholar 

  39. West, D., Wu, H.: Packing Steiner trees and \(S\)-connectors in graphs. J. Combin. Theory Ser. B 102, 186–205 (2012)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

The authors are very grateful to the referees for their valuable comments and suggestions, which greatly improved the presentation of this paper, and for providing us with many references on this subject, which we know for the first time.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xueliang Li.

Additional information

This study was supported by NSFC No. 11371205 and PCSERT.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, X., Mao, Y. On Extremal Graphs with at Most \(\ell \) Internally Disjoint Steiner Trees Connecting Any \(n-1\) Vertices. Graphs and Combinatorics 31, 2231–2259 (2015). https://doi.org/10.1007/s00373-014-1500-7

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00373-014-1500-7

Keywords

Mathematics Subject Classification

Navigation