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Abstract Let G be an edge-colored graph and v a vertex of G. The color degree of
v is the number of colors appearing on the edges incident to v. A rainbow triangle
in G is one in which all edges have distinct colors. In this paper, we first prove that
an edge-colored graph on n vertices contains a rainbow triangle if the color degree
sum of every two adjacent vertices is at least n + 1. Afterwards, we characterize the
edge-colored graphs on n vertices containing no rainbow triangles but satisfying that
each pair of adjacent vertices has color degree sum at least n.
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1 Introduction

Let G = (V (G), E(G)) be a graph, where V (G) and E(G) are the vertex set and
edge set of G, respectively. An edge-coloring of G is a mapping C : E(G) → N,
where N is the set of natural numbers. Denote by C(e) the color of an edge e in G.
An edge-coloring is proper if adjacent edges receive distinct colors. When E(G) is
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assigned an edge-coloring, we call G an edge-colored graph (or briefly, a colored
graph). Let H be a subgraph of G. If each two edges in H have distinct colors, then
H is called rainbow. For a vertex v of G, denote by NG(v) and dG(v) the neighbor
set and the degree of v in G, respectively. The color degree of v in G with respect
to the edge-coloring C , denoted by dcG(v), is the number of colors appearing on the
edges incident to v. Denote by δc(G) the minimum color degree of vertices in G. Let
r be a color. We use drG(v) to denote the number of edges incident to v and receiving
the color r . When there is no ambiguity, we write N (v) for NG(v), d(v) for dG(v),
dc(v) for dcG(v) and dr (v) for drG(v). A triangle is a cycle of length 3. If G contains
no triangles, then we say that G is triangle-free. For terminology and notation not
defined here, we refer the reader to [2].

Rainbow subgraphs in colored graphs, such as rainbow matchings and rainbow
cycles etc., have been well studied (see the survey paper [3]). Here we mainly focus
on the existence of rainbow triangles in colored graphs.

Let G be a graph on n vertices. We know from Mantel’s theorem that G contains a
triangle if |E(G)| > �n2/4�. As a corollary, G contains a triangle if d(v) ≥ (n+1)/2
for every vertex v ∈ V (G).

For a colored graph G, Li and Wang [6] conjectured in 2006 that G contains a
rainbow triangle if dc(v) ≥ (n + 1)/2 for every vertex v ∈ V (G). This conjecture
was formally published in [7] in 2012 and confirmed by Li [5] in 2013.

Theorem 1 (Li [5]) Let G be a colored graph on n vertices. If dc(v) ≥ (n + 1)/2 for
every vertex v ∈ V (G), then G contains a rainbow triangle.

Independently, Li et al. [4] proved a stronger result, obtaining Theorem 1 as a
corollary.

Theorem 2 (Li et al. [4]) Let G be a colored graph on n vertices. If
∑

v∈V (G) d
c(v) ≥

n(n + 1)/2, then G contains a rainbow triangle.

Li et al. [4] also proved that the bound of color degree in Theorem 1 is tight for the
existence of rainbow triangles, but can be lowered to n/2with some simple exceptions.

Theorem 3 (Li et al. [4]) Let G be a colored graph on n vertices. If dc(v) ≥ n/2 for
every vertex v ∈ V (G) and G contains no rainbow triangles, then n is even and G is
a properly colored Kn/2,n/2, unless G = K4 − e or K4 when n = 4.

Motivated by the relation between the classic Dirac’s condition and Ore’s condition
for long cycles, wewonder whether a colored graphG on n vertices contains a rainbow
triangle when

dc(u) + dc(v) ≥ n + 1 (1)

for every nonadjacent vertices u, v ∈ V (G).
In fact, Bondy [1] proved that a graph G on n vertices is pancyclic if d(u)+d(v) ≥

n+1 for any nonadjacent vertices u, v ∈ V (G). Certainly, G contains a triangle when
G is pancyclic.

However, we find that the color degree sum condition (1) can not guarantee the
existence of rainbow triangles.
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Example 1 Construct a colored graph G with V (G) = {v1, v2, . . . , vn}, E(G) =
{viv j : 1 ≤ i < j ≤ n, 1 ≤ i ≤ �c/2	}, and C(viv j ) = min{i, j}, where c ∈
[n + 1, 2n − 2] is an integer. Obviously, G satisfies that dc(u) + dc(v) ≥ c ≥
n + 1 for every pair of nonadjacent vertices u, v ∈ V (G) but contains no rainbow
triangles.

Oppositely,motivated by the fact that a graphG contains a triangle if there is an edge
uv ∈ E(G) satisfying d(u) + d(v) ≥ |V (G)| + 1, we show that the color degree sum
condition for adjacent vertices is able to guarantee the existence of rainbow triangles
in colored graphs.

Theorem 4 Let G be a colored graph on n vertices and E(G) 
= ∅. If dc(u)+dc(v) ≥
n + 1 for every edge uv ∈ E(G), then G contains a rainbow triangle.

In fact, the color degree sum bound “n + 1” is sharp for the existence of rainbow
triangles. This can be shown by the following two classes of colored graphs.

Example 2 Let Kk,n−k (1 ≤ k ≤ n/2) be a properly colored complete bipartite graph.

Example 3 Let Dn be a colored graph with V (Dn) = {u1, u2, v1, v2, . . . , vn−2},
E(Dn) = {u1u2} ∪ {uiv j : i = 1, 2; j = 1, 2, . . . , n − 2}, and C(u1u2) =
0,C(uiv j ) = j, (i = 1, 2; j = 1, 2, . . . , n − 2).

It is easy to check that both examples satisfy dc(u) + dc(v) ≥ n for every edge uv

but contain no rainbow triangles.
Let Gc

1 be the set of all properly colored complete bipartite graphs and Gc
2 be the

set of all Dn-type graphs. With more efforts, we can prove that Gc
1 and Gc

2 are the only
classes of extremal graphs when lowering the bound “n + 1” to “n”.

Theorem 5 Let G be a colored graph on n ≥ 5 vertices and E(G) 
= ∅. If dc(u) +
dc(v) ≥ n for every edge uv ∈ E(G) and G contains no rainbow triangles, then
G ∈ Gc

1 ∪ Gc
2 .

Here the condition E(G) 
= ∅ in above theorems is necessary. If E(G) is empty,
then the restrictions on the color degree sum of adjacent vertices are meaningless.

2 Two Lemmas

Before presenting the proofs of the main results, we first prove the following lemmas.

Lemma 1 Let G be a colored graph on n vertices and E(G) 
= ∅. If G is triangle-free
and dc(u) + dc(v) ≥ n for every edge uv ∈ E(G), then G is a complete bipartite
graph with a proper edge-coloring.

Proof Since G contains no triangles, for each edge uv ∈ E(G), we have N (u) ∩
N (v) = ∅. So d(u) + d(v) ≤ n. Also, d(u) + d(v) ≥ dc(u) + dc(v) ≥ n. Hence
d(u) + d(v) = dc(u) + dc(v) = n. This implies that G is properly colored.
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Let xy be an edge in G and N (x) = A. Then N (y) = V (G)\A. Let N (y) = B.
Then y ∈ A and x ∈ B. Since G is triangle-free, G[A] and G[B] are empty graphs.
For each vertex a ∈ A, we have ax ∈ E(G) and N (a) ⊆ B. Thus,

|B| ≥ d(a) ≥ dc(a) = n − dc(x) = n − d(x) = n − |A| = |B|.

This implies that N (a) = B. Similarly, for each vertex b ∈ B, we have N (b) = A.
Hence G = (A, B) is a complete bipartite graph with a proper edge-coloring. ��

Lemma 2 Let G be a colored graph on n ≥ 6 vertices such that dc(u) + dc(v) ≥ n
for every edge uv ∈ E(G). Let x be a vertex in G such that dc(x) = δc(G) and
let G ′ = G − x. If G ′ is a properly colored complete bipartite graph and G is not
triangle-free, then G contains a rainbow triangle.

Proof Let G ′ be a properly colored Kk,n−1−k = (A, B). Then for vertices a ∈ A
and b ∈ B, we have dcG ′(a) = n − k − 1 and dcG ′(b) = k. Let A′ = N (x) ∩ A and
B ′ = N (x) ∩ B. Since G is not triangle-free, we have A′, B ′ 
= ∅.
Claim 1 For vertices a ∈ A′ and b ∈ B ′, dcG ′(a) ≥ n/2 − 1 and dcG ′(b) ≥ n/2 − 1.

Proof Since dc(a) ≥ dc(x) ≥ n − dc(a) and dc(b) ≥ dc(x) ≥ n − dc(b), we have
dc(a) ≥ n/2 and dc(b) ≥ n/2. So we obtain dcG ′(a) ≥ dc(a) − 1 ≥ n/2 − 1 and
dcG ′(b) ≥ dc(b) − 1 ≥ n/2 − 1. ��
Claim 2 dc(x) ≥ 3.

Proof Choose a ∈ A′ and b ∈ B ′. Then

dcG ′(a) + dcG ′(b) = n − 1. (2)

If n is odd, then n ≥ 7. By Claim 1 and Eq. (2), dcG ′(a) = dcG ′(b) = (n − 1)/2.
Thus dc(b) ≤ dcG ′(b) + 1 = (n + 1)/2. So dc(x) ≥ n − dc(b) ≥ (n − 1)/2 ≥ 3.

If n is even, then by Claim 1 and Eq. (2), we have min{dcG ′(a), dcG ′(b)} = n/2 −
1. Thus, min{dc(a), dc(b)} ≤ min{dcG ′(a), dcG ′(b)} + 1 = n/2. So dc(x) ≥ n −
min{dc(a), dc(b)} ≥ n/2 ≥ 3. ��

Claim 2 implies that there exist a1 ∈ A′ and b1 ∈ B ′ such that C(xa1) 
= C(xb1).
Let C(xa1) = 1 and C(xb1) = 2. Now, we will prove this lemma by contradiction.

Suppose that G contains no rainbow triangles. Then C(a1b1) ∈ {1, 2}. Without
loss of generality, assume that C(a1b1) = 1. Then dc(a1) = dcG ′(a1). Hence, for each
vertex b ∈ B, we have dc(b) ≥ n−dc(a1) = n−dcG ′(a1) = dcG ′(b)+1. Thus B ′ = B
and dC(xb)(b) = 1.

Since |B ′| = |B| = dcG ′(a1) ≥ n/2 − 1 ≥ 2, we have B ′\{b1} 
= ∅. Let b be a
vertex in B ′\{b1}. Consider the triangle xa1bx . Since dC(xb)(b) = 1 andG ′ is properly
colored, we have C(xb) = C(xa1) = 1. This means that C(xb) = 1 for every vertex
b ∈ B ′\{b1}.

Furthermore, by Claim 2, there is a vertex a2 ∈ A′ such that C(xa2) /∈ {1, 2}. Let
C(xa2) = 3. Let b2 be a vertex in B ′\{b1}. Then C(xb2) = 1. Since the triangle
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xa2b1x is not rainbow and dC(xb1)(b1) = 1, we have C(a2b1) = 3. Similarly, consid-
ering the triangle xa2b2x and the fact that dC(xb2)(b2) = 1, we get C(a2b2) = 3. This
contradicts that G ′ is a properly colored graph. ��

3 Proofs of Theorems

Proof of Theorem 4 Suppose the contrary. Assume that G is a counterexample such
that |V (G)| + |E(G)| is as small as possible. Let xy be an edge of G. Then

n − 1 ≥ max{dc(x), dc(y)} ≥ (dc(x) + dc(y))/2 ≥ (n + 1)/2.

This implies that n ≥ 3. If δc(G) ≥ (n + 1)/2, then by Theorem 1, G contains
a rainbow triangle, a contradiction. So there must be a vertex x ∈ V (G) such that
dc(x) < (n + 1)/2. Let G ′ = G − x .

Claim 1 E(G ′) is nonempty.

Proof If d(x) = 0, then there is nothing to prove. If d(x) > 0, then there exists a
vertex y ∈ N (x) such that d(y) ≥ dc(y) ≥ n + 1 − dc(x) > (n + 1)/2 ≥ 2. So
dG ′(y) = d(y) − 1 > 1. This shows that E(G ′) is nonempty. ��
Claim 2 For each edge uv ∈ E(G ′), dcG ′(u) + dcG ′(v) ≥ n.

Proof If u /∈ N (x) or v /∈ N (x), then dcG ′(u) + dcG ′(v) ≥ dc(u) + dc(v) − 1 ≥ n. If
u, v ∈ N (x), then dc(u) > (n+1)/2 and dc(v) > (n+1)/2. Thus dcG ′(u)+dcG ′(v) ≥
dc(u) + dc(v) − 2 > n − 1. Hence, dcG ′(u) + dcG ′(v) ≥ n. ��

By Claims 1 and 2,G ′ is a smaller counterexample, a contradiction. This completes
the proof. ��
Proof of Theorem 5

Case 1 n = 5.

If G is triangle-free, then by Lemma 1, G is a properly colored complete bipartite
graph, thus G ∈ Gc

1. Now, suppose that G contains a triangle. Let S = {v : dc(v) ≤ 2}
and T = {v : dc(v) ≥ 3}.
Claim 1 S is an independent set and T is a clique with |T | ≥ 2.

Proof Since dc(u) + dc(v) ≥ 5 for every edge uv ∈ E(G), S is an independent set.
Furthermore, we have |T | ≥ 1 by the fact that E(G) 
= ∅. If |T | = 1, then G is a
bipartite graph. This contradicts that G contains a triangle. So we have |T | ≥ 2. Now
we will prove that T is a clique by contradiction.

Suppose that there are vertices u, v ∈ T such that uv /∈ E(G). Then d(u) = d(v) =
3 and dc(u) = dc(v) = 3. Let {x, y, z} = V (G)\{u, v}, C(ux) = 1, C(uy) = 2 and
C(uz) = 3. Since G is not a bipartite graph, the edge set of G[{x, y, z}] is nonempty.
So there exists a vertex in {x, y, z}, say x , satisfying that dc(x) ≥ 3. Furthermore,
there is a vertex s ∈ {y, z} such that xs ∈ E(G) and C(xs) 
= 1. Without loss of
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generality, assume that s = y. Then C(xy) = 2. Now consider the triangle vxyv. We
have C(xv) = 2 or C(yv) = 2.

If C(xv) = 2, then xz ∈ E(G) and C(xz) = 3. Now, xzvx is a triangle and
C(zv) 
= C(xv). So C(vz) = C(xz) = 3. Note that dc(z) ≥ 5 − dc(v) = 2. So
yz ∈ E(G) and C(yz) 
= 3. Since xyzx is a triangle but not rainbow, we have
C(yz) = 2. Thus, dc(y) ≤ 2 and dc(y) + dc(z) ≤ 4 < 5 for the edge yz, a
contradiction.

If C(yv) = 2, then dc(y) ≤ 2. Furthermore, we have dc(y) ≥ 5 − dc(u) = 2. So
dc(y) = 2. This implies that yz ∈ E(G) and C(yz) = 3. Since dc(z) ≥ 5− dc(y) =
3, we have C(vz) 
= 3. Consider the triangle yzvy. We have C(zv) = 2. However,
this contradicts that C(vy) 
= C(vz).

In summary, |T | is a clique. ��
Claim 2 |T | = 2.

Proof By contradiction.
If |T | = 5, by Theorem 1, G contains a rainbow triangle, a contradiction.
If |T | = 4, by Claim 1, G[T ] ∼= K4. We first prove that dcG[T ](v) = 2 for every

vertex v ∈ T . Since 3 ≥ dcG[T ](v) ≥ dc(v) − 1 ≥ 2, it is sufficient to show that
dcG[T ](v) 
= 3 for every vertex v ∈ T . Suppose that this is false. Then there is a
vertex v0 ∈ T such that dcG[T ](v0) = 3. Let T = {v0, v1, v2, v3}. Without loss
of generality, assume that C(v0vi ) = i(i = 1, 2, 3) and let C(v1v2) = 1. Since
dcG[T ](vi ) ≥ 2(i = 1, 3), we have C(v1v3) = 3 and C(v3v2) = 2 by considering
triangles v0v1v3v0 and v0v2v3v0. Thus, we obtain a rainbow triangle v1v2v3v1, a
contradiction. So for every vertex v ∈ T , dcG[T ](v) = 2. Let {x} = V (G)\T . We

have C(xvi ) ∈ E(G) and dC(xvi )
G (vi ) = 1 (i = 0, 1, 2, 3). Since G contains no

rainbow triangles, we have C(xvi ) = C(xv j ) (i, j = 0, 1, 2, 3). Thus dc(x) = 1 and
dc(x) + dc(v0) = 4 < 5, a contradiction.

If |T | = 3, then set T = {x, y, z} and S = {u, v}. By Claim 1, xyzx is a triangle and
uv /∈ E(G). Without loss of generality, assume that C(xy) = C(xz) = 1, C(ux) = 2
and C(vx) = 3. We have dc(x) = 3 and dc(u) = dc(v) = 2. Thus, there exists
a vertex s ∈ {y, z} such that C(us) 
= C(ux). Combining this with the fact that
C(ux) 
= C(xy) and C(ux) 
= C(xz), we have C(us) = C(xs). Without loss of
generality, assume that s = y. Then C(uy) = 1. Now, consider that dc(y) ≥ 3 and
dc(v) = 2. We have C(yv) = C(xv) = 3 and C(vz) = C(xz) = 1. Note that the
edge yz is contained in the triangle vyzv. So C(yz) = 1 or 3. However, this implies
that dc(y) ≤ 2, a contradiction.

Thus, we have |T | ≤ 2. By Claim 1, we get |T | = 2. ��
Now, let T = {u, v} and S = {x, y, z}. By Claim 1, uv ∈ E(G) and S is an

independent set. If dc(x) = dc(y) = dc(z) = 1, then dc(u) = dc(v) = 4. Thus,
obviously, G ∈ Gc

2. If there is a vertex in S, say x , satisfying dc(x) = 2, then
C(xu) 
= C(xv). Since xuvx is not a rainbow triangle, we can assume that C(xu) =
C(uv). Thus we have yu, zu ∈ E(G), dc(u) = 3, C(yu) 
= C(uv), C(zu) 
= C(uv)

and dc(y) = dc(z) = 2. Since yuvy and zuvz are not rainbow triangles, we have
C(yv) = C(zv) = C(uv). This implies that dc(v) ≤ 2, a contradiction.
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Case 2 n ≥ 6.

Weprove this case by induction.Note that Theorem5 is true for graphs on 5 vertices.
Assume that it is true for graphs of order n − 1 (n ≥ 6). We will prove that it is also
true for graphs of order n.

Let G be a graph on n ≥ 6 vertices. Since G contains no rainbow triangles, by
Theorem 1, we have δc(G) ≤ n/2. If δc(G) = n/2, by Theorem 3, n is even and
G is a properly colored Kn/2,n/2. If G is triangle-free, by Lemma 1, G is a complete
bipartite graph with a proper edge-coloring. In both cases, we have G ∈ Gc

1.
Now, consider the case that δc(G) < n/2 and G is not triangle-free. Let x be a

vertex inG such that dc(x) = δc(G). LetG ′ = G−x . Similar to the proof of Theorem
4, we have E(G ′) 
= ∅ and dcG ′(u)+ dcG ′(v) ≥ n− 1 for every edge uv ∈ E(G ′). This
implies that G ′ satisfies the conditions in Theorem 5. By assumption, G ′ ∈ Gc

1 ∪ Gc
2.

However, by Lemma 2, G ′ is not a properly colored bipartite graph. Hence, G ′ ∈ Gc
2.

Now, we will prove that G ∈ Gc
2. Without loss of generality, let

V (G ′) = {u1, u2, v1, v2, . . . , vn−3},
E(G ′) = {u1u2} ∪ {uiv j : i = 1, 2; j = 1, 2, . . . , n − 3},

and

C(u1u2) = 0,C(uiv j ) = j (i = 1, 2; j = 1, 2, . . . , n − 3).

Thus, we have

dcG ′(u1) = dcG ′(u2) = n − 2

and

dcG ′(v j ) = 1 ( j = 1, 2, . . . , n − 3).

Since

dc(x) + dc(v j ) ≤ 2dc(v j ) ≤ 2dcG ′(v j ) + 2 = 4 < n ( j = 1, 2, . . . , n − 3),

we have

N (x) ⊆ {u1, u2}

and

dc(v j ) = dcG ′(v j ) = 1 ( j = 1, 2, . . . , n − 3).

Furthermore, we get

n ≤ dc(ui ) + dc(v1) ≤ (dcG ′(ui ) + 1) + 1 = n (i = 1, 2).
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This implies that

dc(ui ) = dcG ′(ui ) + 1 (i = 1, 2).

Thus,

{u1, u2} ⊆ N (x)

and

1 ≤ dc(x) ≤ dc(v1) = 1.

Now, N (x) = {u1, u2}, dc(u1) = dc(u2) = n − 1 and dc(x) = dc(v j ) = 1 for
j = 1, 2, . . . , n − 3. This implies that G ∈ Gc

2.
The proof is complete. ��
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