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Abstract Let G be an edge-colored graph and v a vertex of G. The color degree of
v is the number of colors appearing on the edges incident to v. A rainbow triangle
in G is one in which all edges have distinct colors. In this paper, we first prove that
an edge-colored graph on n vertices contains a rainbow triangle if the color degree
sum of every two adjacent vertices is at least n + 1. Afterwards, we characterize the
edge-colored graphs on n vertices containing no rainbow triangles but satisfying that
each pair of adjacent vertices has color degree sum at least n.
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1 Introduction

Let G = (V(G), E(G)) be a graph, where V(G) and E(G) are the vertex set and
edge set of G, respectively. An edge-coloring of G is a mapping C: E(G) — N,
where N is the set of natural numbers. Denote by C(e) the color of an edge ¢ in G.
An edge-coloring is proper if adjacent edges receive distinct colors. When E(G) is
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assigned an edge-coloring, we call G an edge-colored graph (or briefly, a colored
graph). Let H be a subgraph of G. If each two edges in H have distinct colors, then
H is called rainbow. For a vertex v of G, denote by Ng(v) and dg (v) the neighbor
set and the degree of v in G, respectively. The color degree of v in G with respect
to the edge-coloring C, denoted by d¢; (v), is the number of colors appearing on the
edges incident to v. Denote by §¢(G) the minimum color degree of vertices in G. Let
r be a color. We use d; (v) to denote the number of edges incident to v and receiving
the color r. When there is no ambiguity, we write N (v) for Ng (v), d(v) for dg (v),
d‘(v) for dg;(v) and d" (v) for d; (v). A triangle is a cycle of length 3. If G contains
no triangles, then we say that G is triangle-free. For terminology and notation not
defined here, we refer the reader to [2].

Rainbow subgraphs in colored graphs, such as rainbow matchings and rainbow
cycles etc., have been well studied (see the survey paper [3]). Here we mainly focus
on the existence of rainbow triangles in colored graphs.

Let G be a graph on n vertices. We know from Mantel’s theorem that G contains a
triangle if | E(G)| > [n%/4]. Asa corollary, G contains a triangle if d(v) > (n+1)/2
for every vertex v € V(G).

For a colored graph G, Li and Wang [6] conjectured in 2006 that G contains a
rainbow triangle if d°(v) > (n + 1)/2 for every vertex v € V(G). This conjecture
was formally published in [7] in 2012 and confirmed by Li [5] in 2013.

Theorem 1 (Li [5]) Let G be a colored graph on n vertices. If d°(v) > (n+ 1)/2 for
every vertex v € V(G), then G contains a rainbow triangle.

Independently, Li et al. [4] proved a stronger result, obtaining Theorem 1 as a
corollary.

Theorem 2 (Lietal. [4]) Let G be a colored graph on n vertices. IvaeV(G) d(v) >
n(n + 1)/2, then G contains a rainbow triangle.

Li et al. [4] also proved that the bound of color degree in Theorem 1 is tight for the
existence of rainbow triangles, but can be lowered to n /2 with some simple exceptions.

Theorem 3 (Li et al. [4]) Let G be a colored graph on n vertices. If d“(v) > n/2 for
every vertex v € V(G) and G contains no rainbow triangles, then n is even and G is
a properly colored Ky, /3 2, unless G = K4 — e or K4y whenn = 4.

Motivated by the relation between the classic Dirac’s condition and Ore’s condition
for long cycles, we wonder whether a colored graph G on n vertices contains a rainbow
triangle when

du)+d(w)y=n+1 €))

for every nonadjacent vertices u, v € V(G).

In fact, Bondy [1] proved that a graph G on n vertices is pancyclic if d (u) +d(v) >
n 4+ 1 for any nonadjacent vertices u, v € V(G). Certainly, G contains a triangle when
G is pancyclic.

However, we find that the color degree sum condition (1) can not guarantee the
existence of rainbow triangles.
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Example 1 Construct a colored graph G with V(G) = {vi, va, ..., v}, E(G)
{fvivi:1 <i < j=<n1=<i=</[c/2]}, and C(v;v;) = min{i, j}, where ¢
[n + 1,2n — 2] is an integer. Obviously, G satisfies that d“(u) + d“(v) > ¢
n + 1 for every pair of nonadjacent vertices u, v € V(G) but contains no rainbow
triangles.

vV m |l

Oppositely, motivated by the fact that a graph G contains a triangle if there is an edge
uv € E(G) satisfying d(u) +d(v) > |V(G)| + 1, we show that the color degree sum
condition for adjacent vertices is able to guarantee the existence of rainbow triangles
in colored graphs.

Theorem 4 Let G be a colored graph on n vertices and E(G) # 0. If d“(u)+d° (v) >
n + 1 for every edge uv € E(G), then G contains a rainbow triangle.

In fact, the color degree sum bound “n + 1” is sharp for the existence of rainbow
triangles. This can be shown by the following two classes of colored graphs.

Example 2 Let Ky ,— (1 < k < n/2)be aproperly colored complete bipartite graph.

Example 3 Let D, be a colored graph with V(D,) = {u,uz, vy, v2,..., -2},
E(Dy) = {wua} U{ujv;:i = 1,2;j = 1,2,...,n — 2}, and C(ujuz) =
0,Cluivj))=j,(=12j=12,...,n—2).

It is easy to check that both examples satisfy d(u) 4+ d“(v) > n for every edge uv
but contain no rainbow triangles.

Let G be the set of all properly colored complete bipartite graphs and G5 be the
set of all D,,-type graphs. With more efforts, we can prove that G{ and G5 are the only

T3]

classes of extremal graphs when lowering the bound “n + 1 to “n”.

Theorem 5 Let G be a colored graph on n > 5 vertices and E(G) # 0. If d°(u) +
d°(v) > n for every edge uv € E(G) and G contains no rainbow triangles, then
G e G UGS

Here the condition E(G) # ¢ in above theorems is necessary. If E(G) is empty,

then the restrictions on the color degree sum of adjacent vertices are meaningless.

2 Two Lemmas

Before presenting the proofs of the main results, we first prove the following lemmas.

Lemma 1 Let G be a colored graph on n vertices and E(G) # O. If G is triangle-free
and d°(u) + d°(v) > n for every edge uv € E(G), then G is a complete bipartite
graph with a proper edge-coloring.

Proof Since G contains no triangles, for each edge uv € E(G), we have N(u) N
N@) = 0. So d(u) + d(v) < n. Also, d(u) + d(v) > d°(u) + d°(v) > n. Hence
d(u) +d(v) = d°(u) + d°(v) = n. This implies that G is properly colored.
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Let xy be an edge in G and N(x) = A. Then N(y) = V(G)\A. Let N(y) = B.
Then y € A and x € B. Since G is triangle-free, G[A] and G[B] are empty graphs.
For each vertex a € A, we have ax € E(G) and N(a) € B. Thus,

|B| = d(a) = d(a) =n—d(x) =n —d(x) =n— |A| = |B|.

This implies that N (a) = B. Similarly, for each vertex b € B, we have N (b) = A.
Hence G = (A, B) is a complete bipartite graph with a proper edge-coloring. O

Lemma 2 Let G be a colored graph on n > 6 vertices such that d°(u) + d(v) > n
for every edge uv € E(G). Let x be a vertex in G such that d°(x) = §°(G) and
let G' = G — x. If G' is a properly colored complete bipartite graph and G is not
triangle-free, then G contains a rainbow triangle.

Proof Let G’ be a properly colored Ky ,—1—x = (A, B). Then for vertices a € A
and b € B, we have d;,(a) = n —k — 1 and d(, (b) = k. Let A’ = N(x)N A and
B’ = N(x) N B. Since G is not triangle-free, we have A’, B’ # (.

Claim 1 For verticesa € A’ andb € B, dg,(a) = n/2 —landdg,(b) = n/2 — 1.

Proof Since d(a) > d°(x) > n — d°(a) and d(b) > d°(x) > n — d°(b), we have
d“(a) > n/2 and d°(b) > n/2. So we obtain d¢, (a) > d°(a) — 1 > n/2 — 1 and
dg,(b) =d°(b) —1>n/2 1. O

Claim 2 d°(x) > 3.

Proof Choose a € A" and b € B'. Then
dg,(a) +dg (b)) =n — 1. )

If n is odd, then n > 7. By Claim 1 and Eq. (2), d, (a) = d%,(b) = (n — 1)/2.
Thus d°(b) < dS,(b) + 1 = (n + 1)/2. So d°(x) > n — d°(h) > (n — 1)/2 > 3.

If n is even, then by Claim 1 and Eq. (2), we have min{d(, (a), d;, (b)} = n/2 —
1. Thus, min{d“(a), d“(b)} < min{d(, (a),d,(b)} + 1 = n/2. So d°(x) > n —
min{d€(a), d°(b)} > n/2 > 3. O

Claim 2 implies that there exist a; € A’ and b; € B’ such that C(xa;) # C(xb)).
Let C(xa;) = 1 and C(xb1) = 2. Now, we will prove this lemma by contradiction.

Suppose that G contains no rainbow triangles. Then C(a;b1) € {1, 2}. Without
loss of generality, assume that C(a1b1) = 1. Then d“(a1) = d;, (a1). Hence, for each
vertex b € B, we have d“(b) > n—d‘(ay) = n—dg,(ar) = dg,(b)+1.Thus B" = B
and d€OP) (p) = 1.

Since |B'| = |B| = d,(a1) = n/2 — 1 > 2, we have B'\{b1} # 0. Let b be a
vertex in B'\ {b;}. Consider the triangle xa; bx. Since d¢“?)(b) = 1 and G is properly
colored, we have C(xb) = C(xaj) = 1. This means that C(xb) = 1 for every vertex
b € B'\{b;}.

Furthermore, by Claim 2, there is a vertex ay € A" such that C(xay) ¢ {1, 2}. Let
C(xap) = 3. Let by be a vertex in B'\{b1}. Then C(xby) = 1. Since the triangle
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xazbix is not rainbow and d€“?0 (b)) = 1, we have C(azb;) = 3. Similarly, consid-
ering the triangle xaz by x and the fact that d Clxbr) (by) = 1, we get C(azby) = 3. This
contradicts that G’ is a properly colored graph. O

3 Proofs of Theorems

Proof of Theorem 4 Suppose the contrary. Assume that G is a counterexample such
that |V (G)| + |E(G)] is as small as possible. Let xy be an edge of G. Then

n—1>max{d(x),d(y)} = (d°(x) +d°(»)/2 = (n + 1)/2.

This implies that n > 3. If °(G) > (n + 1)/2, then by Theorem 1, G contains
a rainbow triangle, a contradiction. So there must be a vertex x € V(G) such that
d°(x) < (n+1)/2.Let G’ = G — x.

Claim 1 E(G') is nonempty.

Proof 1f d(x) = 0, then there is nothing to prove. If d(x) > 0, then there exists a
vertex y € N(x) such that d(y) > d°(y) > n+1—-d(x) > (n+1)/2 > 2. So
dg'(y) = d(y) — 1 > 1. This shows that E(G") is nonempty. O

Claim 2 For each edge uv € E(G’), d<.,(u) + d<.,(v) > n.

Proof Ifu ¢ N(x)orv ¢ N(x), then d(, (u) +dg,(v) > d°(u) +d°(v) — 1 > n.If
u,v € N(x),thend(u) > (n+1)/2andd“(v) > (n+1)/2. Thus dg;, (u) +dg, (v) >

d(u) +d(v) —2 > n — 1. Hence, d;, (u) +dg, (v) > n. O
By Claims 1 and 2, G’ is a smaller counterexample, a contradiction. This completes

the proof. O

Proof of Theorem 5

Casel n =5.

If G is triangle-free, then by Lemma 1, G is a properly colored complete bipartite
graph, thus G € G{. Now, suppose that G contains a triangle. Let S = {v: d“(v) < 2}
and T = {v: d°(v) > 3}.

Claim 1 S is an independent set and T is a clique with |T| > 2.

Proof Since d€(u) 4+ d°(v) > 5 for every edge uv € E(G), S is an independent set.
Furthermore, we have |T| > 1 by the fact that E(G) # @. If |T| = 1, then G is a
bipartite graph. This contradicts that G contains a triangle. So we have |T| > 2. Now
we will prove that T is a clique by contradiction.

Suppose that there are vertices u, v € T suchthatuv ¢ E(G).Thend(u) = d(v) =
3and d°(u) = d“(v) = 3. Let {x, y, z} = V(G)\{u, v}, C(ux) = 1, C(uy) = 2 and
C(uz) = 3. Since G is not a bipartite graph, the edge set of G[{x, y, z}] is nonempty.
So there exists a vertex in {x, y, z}, say x, satisfying that d°(x) > 3. Furthermore,
there is a vertex s € {y, z} such that xs € E(G) and C(xs) # 1. Without loss of

@ Springer



2006 Graphs and Combinatorics (2016) 32:2001-2008

generality, assume that s = y. Then C(xy) = 2. Now consider the triangle vxyv. We
have C(xv) =2 or C(yv) = 2.

If C(xv) = 2, then xz € E(G) and C(xz) = 3. Now, xzvx is a triangle and
C(zv) # C(xv). So C(vz) = C(xz) = 3. Note that d°(z) > 5 — d°(v) = 2. So
vz € E(G) and C(yz) # 3. Since xyzx is a triangle but not rainbow, we have
C(yz) = 2. Thus, d°(y) < 2 and d°(y) + d“(z) < 4 < 5 for the edge yz, a
contradiction.

If C(yv) = 2, then d°(y) < 2. Furthermore, we have d°(y) > 5 — d“(u) = 2. So
d(y) = 2. This implies that yz € E(G) and C(yz) = 3. Since d“(z) > 5—d“(y) =
3, we have C(vz) # 3. Consider the triangle yzvy. We have C(zv) = 2. However,
this contradicts that C (vy) # C(vz).

In summary, |T| is a clique. O

Claim2 |T| = 2.

Proof By contradiction.

If |T| =5, by Theorem 1, G contains a rainbow triangle, a contradiction.

If |T| = 4, by Claim 1, G[T] = K4. We first prove that dém(v) = 2 for every
vertex v € T. Since 3 > dé[T](v) > d“(v) — 1 > 2, it is sufficient to show that
dém(v) # 3 for every vertex v € T. Suppose that this is false. Then there is a
vertex vy € T such that dgm(vo) = 3. Let T = {vg, v1, v2, v3}. Without loss
of generality, assume that C(vov;) = i(i = 1,2,3) and let C(vjvy) = 1. Since
délT](vi) > 2(i = 1,3), we have C(viv3z) = 3 and C(v3v2) = 2 by considering
triangles voviv3vg and vouavzvg. Thus, we obtain a rainbow triangle vjvov3vy, a
contradiction. So for every vertex v € T, dg[T](v) = 2. Let {x} = V(G)\T. We

have C(xv;) € E(G) and d5™"(v;) = 1 (i = 0,1,2,3). Since G contains no
rainbow triangles, we have C(xv;) = C(xv;) (i, j =0, 1,2, 3). Thus d°(x) = 1 and
d°(x) + d(vg) =4 < 5, a contradiction.

If|T| = 3,thensetT = {x, y, z}and S = {u, v}. By Claim 1, xyzx is a triangle and
uv ¢ E(G). Without loss of generality, assume that C(xy) = C(xz) =1, C(ux) =2
and C(vx) = 3. We have d“(x) = 3 and d°(u) = d°(v) = 2. Thus, there exists
a vertex s € {y, z} such that C(us) # C(ux). Combining this with the fact that
C(ux) # C(xy) and C(ux) # C(xz), we have C(us) = C(xs). Without loss of
generality, assume that s = y. Then C(uy) = 1. Now, consider that d(y) > 3 and
d“(v) = 2. We have C(yv) = C(xv) = 3 and C(vz) = C(xz) = 1. Note that the
edge yz is contained in the triangle vyzv. So C(yz) = 1 or 3. However, this implies
that d°(y) < 2, a contradiction.

Thus, we have |T| < 2. By Claim 1, we get |T| = 2. m]

Now, let T = {u,v} and S = {x,y,z}. By Claim 1, uv € E(G) and § is an
independent set. If d°(x) = d°(y) = d(z) = 1, then d°(u) = d°(v) = 4. Thus,
obviously, G € G5. If there is a vertex in S, say x, satisfying d°(x) = 2, then
C(xu) # C(xv). Since xuvx is not a rainbow triangle, we can assume that C (xu) =
C(uv). Thus we have yu, zu € E(G), d“(u) = 3, C(yu) # C(uv), C(zu) # C(uv)
and d°(y) = d(z) = 2. Since yuvy and zuvz are not rainbow triangles, we have
C(yv) = C(zv) = C(uv). This implies that d°(v) < 2, a contradiction.
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Case2 n > 6.

We prove this case by induction. Note that Theorem 5 is true for graphs on 5 vertices.
Assume that it is true for graphs of order n — 1 (n > 6). We will prove that it is also
true for graphs of order n.

Let G be a graph on n > 6 vertices. Since G contains no rainbow triangles, by
Theorem 1, we have §°(G) < n/2. If §°(G) = n/2, by Theorem 3, n is even and
G is a properly colored K, /2 /2. If G is triangle-free, by Lemma 1, G is a complete
bipartite graph with a proper edge-coloring. In both cases, we have G € Gf.

Now, consider the case that §(G) < n/2 and G is not triangle-free. Let x be a
vertex in G such that d°(x) = §°(G).Let G’ = G —x. Similar to the proof of Theorem
4, we have E(G') # @ and d¢,, (u) +dg, (v) = n — 1 for every edge uv € E(G’). This
implies that G’ satisfies the conditions in Theorem 5. By assumption, G’ € gy ugs.
However, by Lemma 2, G is not a properly colored bipartite graph. Hence, G’ € G5.
Now, we will prove that G € GS. Without loss of generality, let

V(G') = {ur,uz, vi, va, ..., vg_3},
E(G) ={uyua} U{ujvj:i=1,2j=1,2,...,n =3},

and
Cluuz) =0,Cujvj)=j (=12;j=12,...,n-3).
Thus, we have
dS, (ur) = dg, (uy) = n =2
and
dgo(vp) =1 (j=1,2,....,n=3).
Since
d°(x)+d“(vj) <2d°(vj) <2d;,(vj))+2=4<n (j=1,2,....,n-=3),
we have
N(x) € {ur, us}
and
d°(vj) =dg,(vp) =1 (j=1,2,...,n=3).
Furthermore, we get

n=du)+dw) =dgu)+hH+1l=n (=12).
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This implies that
d“(u;) =dgu) +1 (i=1,2).
Thus,
{ur, uz} S N(x)
and
1 <d°(x) <d°(vy) =1.

Now, N(x) = {uy,uz}, d°(uy) = d(uz) = n —1and d°(x) = d°(v;) = 1 for
Jj=1,2,...,n— 3. This implies that G € G5.
The proof is complete. O
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