Color Degree Sum Conditions for Rainbow Triangles in Edge-Colored Graphs

Ruonan Li ${ }^{1,2}$ • Bo Ning ${ }^{3}$ • Shenggui Zhang ${ }^{1}$

Received: 5 February 2015 / Revised: 7 August 2015 / Published online: 7 April 2016
© Springer Japan 2016

Abstract

Let G be an edge-colored graph and v a vertex of G. The color degree of v is the number of colors appearing on the edges incident to v. A rainbow triangle in G is one in which all edges have distinct colors. In this paper, we first prove that an edge-colored graph on n vertices contains a rainbow triangle if the color degree sum of every two adjacent vertices is at least $n+1$. Afterwards, we characterize the edge-colored graphs on n vertices containing no rainbow triangles but satisfying that each pair of adjacent vertices has color degree sum at least n.

Keywords Edge-colored graphs • Color degree • Rainbow triangles
Mathematics Subject Classification 05C15 - 05C38

1 Introduction

Let $G=(V(G), E(G))$ be a graph, where $V(G)$ and $E(G)$ are the vertex set and edge set of G, respectively. An edge-coloring of G is a mapping $C: E(G) \rightarrow \mathbb{N}$, where \mathbb{N} is the set of natural numbers. Denote by $C(e)$ the color of an edge e in G. An edge-coloring is proper if adjacent edges receive distinct colors. When $E(G)$ is

[^0]assigned an edge-coloring, we call G an edge-colored graph (or briefly, a colored graph). Let H be a subgraph of G. If each two edges in H have distinct colors, then H is called rainbow. For a vertex v of G, denote by $N_{G}(v)$ and $d_{G}(v)$ the neighbor set and the degree of v in G, respectively. The color degree of v in G with respect to the edge-coloring C, denoted by $d_{G}^{c}(v)$, is the number of colors appearing on the edges incident to v. Denote by $\delta^{c}(G)$ the minimum color degree of vertices in G. Let r be a color. We use $d_{G}^{r}(v)$ to denote the number of edges incident to v and receiving the color r. When there is no ambiguity, we write $N(v)$ for $N_{G}(v), d(v)$ for $d_{G}(v)$, $d^{c}(v)$ for $d_{G}^{c}(v)$ and $d^{r}(v)$ for $d_{G}^{r}(v)$. A triangle is a cycle of length 3 . If G contains no triangles, then we say that G is triangle-free. For terminology and notation not defined here, we refer the reader to [2].

Rainbow subgraphs in colored graphs, such as rainbow matchings and rainbow cycles etc., have been well studied (see the survey paper [3]). Here we mainly focus on the existence of rainbow triangles in colored graphs.

Let G be a graph on n vertices. We know from Mantel's theorem that G contains a triangle if $|E(G)|>\left\lfloor n^{2} / 4\right\rfloor$. As a corollary, G contains a triangle if $d(v) \geq(n+1) / 2$ for every vertex $v \in V(G)$.

For a colored graph G, Li and Wang [6] conjectured in 2006 that G contains a rainbow triangle if $d^{c}(v) \geq(n+1) / 2$ for every vertex $v \in V(G)$. This conjecture was formally published in [7] in 2012 and confirmed by Li [5] in 2013.

Theorem 1 (Li [5]) Let G be a colored graph on n vertices. If $d^{c}(v) \geq(n+1) / 2$ for every vertex $v \in V(G)$, then G contains a rainbow triangle.

Independently, Li et al. [4] proved a stronger result, obtaining Theorem 1 as a corollary.

Theorem 2 (Li et al. [4]) Let G be a colored graph on n vertices. If $\sum_{v \in V(G)} d^{c}(v) \geq$ $n(n+1) / 2$, then G contains a rainbow triangle.

Li et al. [4] also proved that the bound of color degree in Theorem 1 is tight for the existence of rainbow triangles, but can be lowered to $n / 2$ with some simple exceptions.

Theorem 3 (Li et al. [4]) Let G be a colored graph on n vertices. If $d^{c}(v) \geq n / 2$ for every vertex $v \in V(G)$ and G contains no rainbow triangles, then n is even and G is a properly colored $K_{n / 2, n / 2}$, unless $G=K_{4}-e$ or K_{4} when $n=4$.

Motivated by the relation between the classic Dirac's condition and Ore's condition for long cycles, we wonder whether a colored graph G on n vertices contains a rainbow triangle when

$$
\begin{equation*}
d^{c}(u)+d^{c}(v) \geq n+1 \tag{1}
\end{equation*}
$$

for every nonadjacent vertices $u, v \in V(G)$.
In fact, Bondy [1] proved that a graph G on n vertices is pancyclic if $d(u)+d(v) \geq$ $n+1$ for any nonadjacent vertices $u, v \in V(G)$. Certainly, G contains a triangle when G is pancyclic.

However, we find that the color degree sum condition (1) can not guarantee the existence of rainbow triangles.

Example 1 Construct a colored graph G with $V(G)=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}, E(G)=$ $\left\{v_{i} v_{j}: 1 \leq i<j \leq n, 1 \leq i \leq\lceil c / 2\rceil\right\}$, and $C\left(v_{i} v_{j}\right)=\min \{i, j\}$, where $c \in$ $[n+1,2 n-2]$ is an integer. Obviously, G satisfies that $d^{c}(u)+d^{c}(v) \geq c \geq$ $n+1$ for every pair of nonadjacent vertices $u, v \in V(G)$ but contains no rainbow triangles.

Oppositely, motivated by the fact that a graph G contains a triangle if there is an edge $u v \in E(G)$ satisfying $d(u)+d(v) \geq|V(G)|+1$, we show that the color degree sum condition for adjacent vertices is able to guarantee the existence of rainbow triangles in colored graphs.

Theorem 4 Let G be a colored graph on n vertices and $E(G) \neq \emptyset$. If $d^{c}(u)+d^{c}(v) \geq$ $n+1$ for every edge $u v \in E(G)$, then G contains a rainbow triangle.

In fact, the color degree sum bound " $n+1$ " is sharp for the existence of rainbow triangles. This can be shown by the following two classes of colored graphs.

Example 2 Let $K_{k, n-k}(1 \leq k \leq n / 2)$ be a properly colored complete bipartite graph.
Example 3 Let D_{n} be a colored graph with $V\left(D_{n}\right)=\left\{u_{1}, u_{2}, v_{1}, v_{2}, \ldots, v_{n-2}\right\}$, $E\left(D_{n}\right)=\left\{u_{1} u_{2}\right\} \cup\left\{u_{i} v_{j}: i=1,2 ; j=1,2, \ldots, n-2\right\}$, and $C\left(u_{1} u_{2}\right)=$ $0, C\left(u_{i} v_{j}\right)=j,(i=1,2 ; j=1,2, \ldots, n-2)$.

It is easy to check that both examples satisfy $d^{c}(u)+d^{c}(v) \geq n$ for every edge $u v$ but contain no rainbow triangles.

Let \mathcal{G}_{1}^{c} be the set of all properly colored complete bipartite graphs and \mathcal{G}_{2}^{c} be the set of all D_{n}-type graphs. With more efforts, we can prove that \mathcal{G}_{1}^{c} and \mathcal{G}_{2}^{c} are the only classes of extremal graphs when lowering the bound " $n+1$ " to " n ".

Theorem 5 Let G be a colored graph on $n \geq 5$ vertices and $E(G) \neq \emptyset$. If $d^{c}(u)+$ $d^{c}(v) \geq n$ for every edge $u v \in E(G)$ and G contains no rainbow triangles, then $G \in \mathcal{G}_{1}^{c} \cup \mathcal{G}_{2}^{c}$.

Here the condition $E(G) \neq \emptyset$ in above theorems is necessary. If $E(G)$ is empty, then the restrictions on the color degree sum of adjacent vertices are meaningless.

2 Two Lemmas

Before presenting the proofs of the main results, we first prove the following lemmas.
Lemma 1 Let G be a colored graph on n vertices and $E(G) \neq \emptyset$. If G is triangle-free and $d^{c}(u)+d^{c}(v) \geq n$ for every edge $u v \in E(G)$, then G is a complete bipartite graph with a proper edge-coloring.

Proof Since G contains no triangles, for each edge $u v \in E(G)$, we have $N(u) \cap$ $N(v)=\emptyset$. So $d(u)+d(v) \leq n$. Also, $d(u)+d(v) \geq d^{c}(u)+d^{c}(v) \geq n$. Hence $d(u)+d(v)=d^{c}(u)+d^{c}(v)=n$. This implies that G is properly colored.

Let $x y$ be an edge in G and $N(x)=A$. Then $N(y)=V(G) \backslash A$. Let $N(y)=B$. Then $y \in A$ and $x \in B$. Since G is triangle-free, $G[A]$ and $G[B]$ are empty graphs. For each vertex $a \in A$, we have $a x \in E(G)$ and $N(a) \subseteq B$. Thus,

$$
|B| \geq d(a) \geq d^{c}(a)=n-d^{c}(x)=n-d(x)=n-|A|=|B|
$$

This implies that $N(a)=B$. Similarly, for each vertex $b \in B$, we have $N(b)=A$.
Hence $G=(A, B)$ is a complete bipartite graph with a proper edge-coloring.
Lemma 2 Let G be a colored graph on $n \geq 6$ vertices such that $d^{c}(u)+d^{c}(v) \geq n$ for every edge uv $\in E(G)$. Let x be a vertex in G such that $d^{c}(x)=\delta^{c}(G)$ and let $G^{\prime}=G-x$. If G^{\prime} is a properly colored complete bipartite graph and G is not triangle-free, then G contains a rainbow triangle.

Proof Let G^{\prime} be a properly colored $K_{k, n-1-k}=(A, B)$. Then for vertices $a \in A$ and $b \in B$, we have $d_{G^{\prime}}^{c}(a)=n-k-1$ and $d_{G^{\prime}}^{c}(b)=k$. Let $A^{\prime}=N(x) \cap A$ and $B^{\prime}=N(x) \cap B$. Since G is not triangle-free, we have $A^{\prime}, B^{\prime} \neq \emptyset$.

Claim 1 For vertices $a \in A^{\prime}$ and $b \in B^{\prime}, d_{G^{\prime}}^{c}(a) \geq n / 2-1$ and $d_{G^{\prime}}^{c}(b) \geq n / 2-1$.
Proof Since $d^{c}(a) \geq d^{c}(x) \geq n-d^{c}(a)$ and $d^{c}(b) \geq d^{c}(x) \geq n-d^{c}(b)$, we have $d^{c}(a) \geq n / 2$ and $d^{c}(b) \geq n / 2$. So we obtain $d_{G^{\prime}}^{c}(a) \geq d^{c}(a)-1 \geq n / 2-1$ and $d_{G^{\prime}}^{c}(b) \geq d^{c}(b)-1 \geq n / 2-1$.

Claim $2 d^{c}(x) \geq 3$.
Proof Choose $a \in A^{\prime}$ and $b \in B^{\prime}$. Then

$$
\begin{equation*}
d_{G^{\prime}}^{c}(a)+d_{G^{\prime}}^{c}(b)=n-1 . \tag{2}
\end{equation*}
$$

If n is odd, then $n \geq 7$. By Claim 1 and Eq. (2), $d_{G^{\prime}}^{c}(a)=d_{G^{\prime}}^{c}(b)=(n-1) / 2$. Thus $d^{c}(b) \leq d_{G^{\prime}}^{c}(b)+1=(n+1) / 2$. So $d^{c}(x) \geq n-d^{c}(b) \geq(n-1) / 2 \geq 3$.

If n is even, then by Claim 1 and Eq. (2), we have $\min \left\{d_{G^{\prime}}^{c}(a), d_{G^{\prime}}^{c}(b)\right\}=n / 2-$ 1. Thus, $\min \left\{d^{c}(a), d^{c}(b)\right\} \leq \min \left\{d_{G^{\prime}}^{c}(a), d_{G^{\prime}}^{c}(b)\right\}+1=n / 2$. So $d^{c}(x) \geq n-$ $\min \left\{d^{c}(a), d^{c}(b)\right\} \geq n / 2 \geq 3$.

Claim 2 implies that there exist $a_{1} \in A^{\prime}$ and $b_{1} \in B^{\prime}$ such that $C\left(x a_{1}\right) \neq C\left(x b_{1}\right)$. Let $C\left(x a_{1}\right)=1$ and $C\left(x b_{1}\right)=2$. Now, we will prove this lemma by contradiction.

Suppose that G contains no rainbow triangles. Then $C\left(a_{1} b_{1}\right) \in\{1,2\}$. Without loss of generality, assume that $C\left(a_{1} b_{1}\right)=1$. Then $d^{c}\left(a_{1}\right)=d_{G^{\prime}}^{c}\left(a_{1}\right)$. Hence, for each vertex $b \in B$, we have $d^{c}(b) \geq n-d^{c}\left(a_{1}\right)=n-d_{G^{\prime}}^{c}\left(a_{1}\right)=d_{G^{\prime}}^{c}(b)+1$. Thus $B^{\prime}=B$ and $d^{C(x b)}(b)=1$.

Since $\left|B^{\prime}\right|=|B|=d_{G^{\prime}}^{c}\left(a_{1}\right) \geq n / 2-1 \geq 2$, we have $B^{\prime} \backslash\left\{b_{1}\right\} \neq \emptyset$. Let b be a vertex in $B^{\prime} \backslash\left\{b_{1}\right\}$. Consider the triangle $x a_{1} b x$. Since $d^{C(x b)}(b)=1$ and G^{\prime} is properly colored, we have $C(x b)=C\left(x a_{1}\right)=1$. This means that $C(x b)=1$ for every vertex $b \in B^{\prime} \backslash\left\{b_{1}\right\}$.

Furthermore, by Claim 2, there is a vertex $a_{2} \in A^{\prime}$ such that $C\left(x a_{2}\right) \notin\{1,2\}$. Let $C\left(x a_{2}\right)=3$. Let b_{2} be a vertex in $B^{\prime} \backslash\left\{b_{1}\right\}$. Then $C\left(x b_{2}\right)=1$. Since the triangle
$x a_{2} b_{1} x$ is not rainbow and $d^{C\left(x b_{1}\right)}\left(b_{1}\right)=1$, we have $C\left(a_{2} b_{1}\right)=3$. Similarly, considering the triangle $x a_{2} b_{2} x$ and the fact that $d^{C\left(x b_{2}\right)}\left(b_{2}\right)=1$, we get $C\left(a_{2} b_{2}\right)=3$. This contradicts that G^{\prime} is a properly colored graph.

3 Proofs of Theorems

Proof of Theorem 4 Suppose the contrary. Assume that G is a counterexample such that $|V(G)|+|E(G)|$ is as small as possible. Let $x y$ be an edge of G. Then

$$
n-1 \geq \max \left\{d^{c}(x), d^{c}(y)\right\} \geq\left(d^{c}(x)+d^{c}(y)\right) / 2 \geq(n+1) / 2
$$

This implies that $n \geq 3$. If $\delta^{c}(G) \geq(n+1) / 2$, then by Theorem $1, G$ contains a rainbow triangle, a contradiction. So there must be a vertex $x \in V(G)$ such that $d^{c}(x)<(n+1) / 2$. Let $G^{\prime}=G-x$.

Claim $1 E\left(G^{\prime}\right)$ is nonempty.
Proof If $d(x)=0$, then there is nothing to prove. If $d(x)>0$, then there exists a vertex $y \in N(x)$ such that $d(y) \geq d^{c}(y) \geq n+1-d^{c}(x)>(n+1) / 2 \geq 2$. So $d_{G^{\prime}}(y)=d(y)-1>1$. This shows that $E\left(G^{\prime}\right)$ is nonempty.

Claim 2 For each edge $u v \in E\left(G^{\prime}\right), d_{G^{\prime}}^{c}(u)+d_{G^{\prime}}^{c}(v) \geq n$.
Proof If $u \notin N(x)$ or $v \notin N(x)$, then $d_{G^{\prime}}^{c}(u)+d_{G^{\prime}}^{c}(v) \geq d^{c}(u)+d^{c}(v)-1 \geq n$. If $u, v \in N(x)$, then $d^{c}(u)>(n+1) / 2$ and $d^{c}(v)>(n+1) / 2$. Thus $d_{G^{\prime}}^{c}(u)+d_{G^{\prime}}^{c}(v) \geq$ $d^{c}(u)+d^{c}(v)-2>n-1$. Hence, $d_{G^{\prime}}^{c}(u)+d_{G^{\prime}}^{c}(v) \geq n$.

By Claims 1 and 2, G^{\prime} is a smaller counterexample, a contradiction. This completes the proof.

Proof of Theorem 5

Case $1 n=5$.
If G is triangle-free, then by Lemma $1, G$ is a properly colored complete bipartite graph, thus $G \in \mathcal{G}_{1}^{c}$. Now, suppose that G contains a triangle. Let $S=\left\{v: d^{c}(v) \leq 2\right\}$ and $T=\left\{v: d^{c}(v) \geq 3\right\}$.

Claim $1 S$ is an independent set and T is a clique with $|T| \geq 2$.
Proof Since $d^{c}(u)+d^{c}(v) \geq 5$ for every edge $u v \in E(G), S$ is an independent set. Furthermore, we have $|T| \geq 1$ by the fact that $E(G) \neq \emptyset$. If $|T|=1$, then G is a bipartite graph. This contradicts that G contains a triangle. So we have $|T| \geq 2$. Now we will prove that T is a clique by contradiction.

Suppose that there are vertices $u, v \in T$ such that $u v \notin E(G)$. Then $d(u)=d(v)=$ 3 and $d^{c}(u)=d^{c}(v)=3$. Let $\{x, y, z\}=V(G) \backslash\{u, v\}, C(u x)=1, C(u y)=2$ and $C(u z)=3$. Since G is not a bipartite graph, the edge set of $G[\{x, y, z\}]$ is nonempty. So there exists a vertex in $\{x, y, z\}$, say x, satisfying that $d^{c}(x) \geq 3$. Furthermore, there is a vertex $s \in\{y, z\}$ such that $x s \in E(G)$ and $C(x s) \neq 1$. Without loss of
generality, assume that $s=y$. Then $C(x y)=2$. Now consider the triangle $v x y v$. We have $C(x v)=2$ or $C(y v)=2$.

If $C(x v)=2$, then $x z \in E(G)$ and $C(x z)=3$. Now, $x z v x$ is a triangle and $C(z v) \neq C(x v)$. So $C(v z)=C(x z)=3$. Note that $d^{c}(z) \geq 5-d^{c}(v)=2$. So $y z \in E(G)$ and $C(y z) \neq 3$. Since $x y z x$ is a triangle but not rainbow, we have $C(y z)=2$. Thus, $d^{c}(y) \leq 2$ and $d^{c}(y)+d^{c}(z) \leq 4<5$ for the edge $y z$, a contradiction.

If $C(y v)=2$, then $d^{c}(y) \leq 2$. Furthermore, we have $d^{c}(y) \geq 5-d^{c}(u)=2$. So $d^{c}(y)=2$. This implies that $y z \in E(G)$ and $C(y z)=3$. Since $d^{c}(z) \geq 5-d^{c}(y)=$ 3 , we have $C(v z) \neq 3$. Consider the triangle $y z v y$. We have $C(z v)=2$. However, this contradicts that $C(v y) \neq C(v z)$.

In summary, $|T|$ is a clique.
Claim $2|T|=2$.
Proof By contradiction.
If $|T|=5$, by Theorem 1, G contains a rainbow triangle, a contradiction.
If $|T|=4$, by Claim $1, G[T] \cong K_{4}$. We first prove that $d_{G[T]}^{c}(v)=2$ for every vertex $v \in T$. Since $3 \geq d_{G[T]}^{c}(v) \geq d^{c}(v)-1 \geq 2$, it is sufficient to show that $d_{G[T]}^{c}(v) \neq 3$ for every vertex $v \in T$. Suppose that this is false. Then there is a vertex $v_{0} \in T$ such that $d_{G[T]}^{c}\left(v_{0}\right)=3$. Let $T=\left\{v_{0}, v_{1}, v_{2}, v_{3}\right\}$. Without loss of generality, assume that $C\left(v_{0} v_{i}\right)=i(i=1,2,3)$ and let $C\left(v_{1} v_{2}\right)=1$. Since $d_{G[T]}^{c}\left(v_{i}\right) \geq 2(i=1,3)$, we have $C\left(v_{1} v_{3}\right)=3$ and $C\left(v_{3} v_{2}\right)=2$ by considering triangles $v_{0} v_{1} v_{3} v_{0}$ and $v_{0} v_{2} v_{3} v_{0}$. Thus, we obtain a rainbow triangle $v_{1} v_{2} v_{3} v_{1}$, a contradiction. So for every vertex $v \in T$, $d_{G[T]}^{c}(v)=2$. Let $\{x\}=V(G) \backslash T$. We have $C\left(x v_{i}\right) \in E(G)$ and $d_{G}^{C\left(x v_{i}\right)}\left(v_{i}\right)=1(i=0,1,2,3)$. Since G contains no rainbow triangles, we have $C\left(x v_{i}\right)=C\left(x v_{j}\right)(i, j=0,1,2,3)$. Thus $d^{c}(x)=1$ and $d^{c}(x)+d^{c}\left(v_{0}\right)=4<5$, a contradiction.

If $|T|=3$, then set $T=\{x, y, z\}$ and $S=\{u, v\}$. By Claim $1, x y z x$ is a triangle and $u v \notin E(G)$. Without loss of generality, assume that $C(x y)=C(x z)=1, C(u x)=2$ and $C(v x)=3$. We have $d^{c}(x)=3$ and $d^{c}(u)=d^{c}(v)=2$. Thus, there exists a vertex $s \in\{y, z\}$ such that $C(u s) \neq C(u x)$. Combining this with the fact that $C(u x) \neq C(x y)$ and $C(u x) \neq C(x z)$, we have $C(u s)=C(x s)$. Without loss of generality, assume that $s=y$. Then $C(u y)=1$. Now, consider that $d^{c}(y) \geq 3$ and $d^{c}(v)=2$. We have $C(y v)=C(x v)=3$ and $C(v z)=C(x z)=1$. Note that the edge $y z$ is contained in the triangle $v y z v$. So $C(y z)=1$ or 3 . However, this implies that $d^{c}(y) \leq 2$, a contradiction.

Thus, we have $|T| \leq 2$. By Claim 1, we get $|T|=2$.
Now, let $T=\{u, v\}$ and $S=\{x, y, z\}$. By Claim $1, u v \in E(G)$ and S is an independent set. If $d^{c}(x)=d^{c}(y)=d^{c}(z)=1$, then $d^{c}(u)=d^{c}(v)=4$. Thus, obviously, $G \in \mathcal{G}_{2}^{c}$. If there is a vertex in S, say x, satisfying $d^{c}(x)=2$, then $C(x u) \neq C(x v)$. Since $x u v x$ is not a rainbow triangle, we can assume that $C(x u)=$ $C(u v)$. Thus we have $y u, z u \in E(G), d^{c}(u)=3, C(y u) \neq C(u v), C(z u) \neq C(u v)$ and $d^{c}(y)=d^{c}(z)=2$. Since yuvy and zuvz are not rainbow triangles, we have $C(y v)=C(z v)=C(u v)$. This implies that $d^{c}(v) \leq 2$, a contradiction.

Case $2 n \geq 6$.
We prove this case by induction. Note that Theorem 5 is true for graphs on 5 vertices. Assume that it is true for graphs of order $n-1(n \geq 6)$. We will prove that it is also true for graphs of order n.

Let G be a graph on $n \geq 6$ vertices. Since G contains no rainbow triangles, by Theorem 1, we have $\delta^{c}(G) \leq n / 2$. If $\delta^{c}(G)=n / 2$, by Theorem $3, n$ is even and G is a properly colored $K_{n / 2, n / 2}$. If G is triangle-free, by Lemma $1, G$ is a complete bipartite graph with a proper edge-coloring. In both cases, we have $G \in \mathcal{G}_{1}^{c}$.

Now, consider the case that $\delta^{c}(G)<n / 2$ and G is not triangle-free. Let x be a vertex in G such that $d^{c}(x)=\delta^{c}(G)$. Let $G^{\prime}=G-x$. Similar to the proof of Theorem 4, we have $E\left(G^{\prime}\right) \neq \emptyset$ and $d_{G^{\prime}}^{c}(u)+d_{G^{\prime}}^{c}(v) \geq n-1$ for every edge $u v \in E\left(G^{\prime}\right)$. This implies that G^{\prime} satisfies the conditions in Theorem 5. By assumption, $G^{\prime} \in \mathcal{G}_{1}^{c} \cup \mathcal{G}_{2}^{c}$. However, by Lemma 2, G^{\prime} is not a properly colored bipartite graph. Hence, $G^{\prime} \in \mathcal{G}_{2}^{c}$. Now, we will prove that $G \in \mathcal{G}_{2}^{c}$. Without loss of generality, let

$$
\begin{aligned}
& V\left(G^{\prime}\right)=\left\{u_{1}, u_{2}, v_{1}, v_{2}, \ldots, v_{n-3}\right\}, \\
& E\left(G^{\prime}\right)=\left\{u_{1} u_{2}\right\} \cup\left\{u_{i} v_{j}: i=1,2 ; j=1,2, \ldots, n-3\right\},
\end{aligned}
$$

and

$$
C\left(u_{1} u_{2}\right)=0, C\left(u_{i} v_{j}\right)=j \quad(i=1,2 ; j=1,2, \ldots, n-3) .
$$

Thus, we have

$$
d_{G^{\prime}}^{c}\left(u_{1}\right)=d_{G^{\prime}}^{c}\left(u_{2}\right)=n-2
$$

and

$$
d_{G^{\prime}}^{c}\left(v_{j}\right)=1 \quad(j=1,2, \ldots, n-3) .
$$

Since

$$
d^{c}(x)+d^{c}\left(v_{j}\right) \leq 2 d^{c}\left(v_{j}\right) \leq 2 d_{G^{\prime}}^{c}\left(v_{j}\right)+2=4<n \quad(j=1,2, \ldots, n-3),
$$

we have

$$
N(x) \subseteq\left\{u_{1}, u_{2}\right\}
$$

and

$$
d^{c}\left(v_{j}\right)=d_{G^{\prime}}^{c}\left(v_{j}\right)=1 \quad(j=1,2, \ldots, n-3)
$$

Furthermore, we get

$$
n \leq d^{c}\left(u_{i}\right)+d^{c}\left(v_{1}\right) \leq\left(d_{G^{\prime}}^{c}\left(u_{i}\right)+1\right)+1=n \quad(i=1,2) .
$$

This implies that

$$
d^{c}\left(u_{i}\right)=d_{G^{\prime}}^{c}\left(u_{i}\right)+1 \quad(i=1,2) .
$$

Thus,

$$
\left\{u_{1}, u_{2}\right\} \subseteq N(x)
$$

and

$$
1 \leq d^{c}(x) \leq d^{c}\left(v_{1}\right)=1
$$

Now, $N(x)=\left\{u_{1}, u_{2}\right\}, d^{c}\left(u_{1}\right)=d^{c}\left(u_{2}\right)=n-1$ and $d^{c}(x)=d^{c}\left(v_{j}\right)=1$ for $j=1,2, \ldots, n-3$. This implies that $G \in \mathcal{G}_{2}^{c}$.

The proof is complete.

Acknowledgments The authors are grateful to the referees for their helpful comments.

References

1. Bondy, J.A.: Pancyclic graphs I. J. Comb. Theory 11, 80-84 (1971)
2. Bondy, J.A., Murty, U.S.R.: Graph Theory with Application. Macmillan, London and Elsevier, New York (1976)
3. Kano, M., Li, X.: Monochromatic and heterochromatic subgraphs in edge-colored graphs-a survey. Graphs Comb. 24, 237-263 (2008)
4. Li, B., Ning, B., Xu, C., Zhang, S.: Rainbow triangles in edge-colored graphs. Eur. J. Comb. 36, 453-459 (2014)
5. Li, H.: Rainbow $C_{3}^{\prime} s$ and $C_{4}^{\prime} s$ in edge-colored graphs. Discret. Math. 313, 1893-1896 (2013)
6. Li, H., Wang, G.: Color degree and heterochromatic cycles in edge-colored graphs. RR L.R.I No. 2006, 1460
7. Li, H., Wang, G.: Color degree and heterochromatic cycles in edge-colored graph. Eur. J. Comb. 33, 1958-1964 (2012)

[^0]: Supported by NSFC (No. 11271300) and China Scholarship Council (No. 201506290097).
 \boxtimes Shenggui Zhang
 sgzhang@nwpu.edu.cn
 1 Department of Applied Mathematics, Northwestern Polytechnical University, Xi' an 710072, Shaanxi, People's Republic of China

 2 Faculty of EEMCS, University of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands
 3 Center for Applied Mathematics, Tianjin University, Tianjin 300072, People's Republic of China

