Abstract
Let \(G=(V,E)\) be a graph and \(\phi :V\cup E\rightarrow \{1,2,\ldots ,k\}\) be a total coloring of G. Let C(v) denote the set of the color of vertex v and the colors of the edges incident with v. Let f(v) denote the sum of the color of vertex v and the colors of the edges incident with v. The total coloring \(\phi \) is called neighbor set distinguishing or adjacent vertex distinguishing if \(C(u)\ne C(v)\) for each edge \(uv\in E(G)\). We say that \(\phi \) is neighbor sum distinguishing if \(f(u)\ne f(v)\) for each edge \(uv\in E(G)\). In both problems the challenging conjectures presume that such colorings exist for any graph G if \(k\ge \varDelta (G)+3\). In this paper, by using the famous Combinatorial Nullstellensatz, we prove that in both problems \(k\ge \varDelta (G)+2\mathrm{col}(G)-2\) is sufficient, moreover we prove that if G is not a forest and \(\varDelta \ge 4\), then \(k\ge \varDelta (G)+2\mathrm{col}(G)-3\) is sufficient, where \(\mathrm{col}(G)\) is the coloring number of G. In fact we prove these results in their list versions, which improve the previous results. As a consequence, we obtain an upper bound of the form \(\varDelta (G)+C\) for some families of graphs, e.g. \(\varDelta +9\) for planar graphs. In particular, we therefore obtain that when \(\varDelta \ge 4\) two conjectures we mentioned above hold for 2-degenerate graphs (with coloring number at most 3) in their list versions.
Similar content being viewed by others
References
Alon, N.: Combinatorial Nullstellensatz. Combin. Probab. Comput. 8, 7–29 (1999)
Bondy, J., Murty, U.: Graph Theory with Applications. North-Holland, New York (1976)
Chartrand, G., Jacobson, M., Lehel, J., Oellermann, O., Ruiz, S., Saba, F.: Irregular networks. Congr. Numer. 64, 197–210 (1988)
Chen, X.: On the adjacent vertex distinguishing total coloring numbers of graphs with \(\varDelta = 3\). Discrete Math. 308(17), 4003–4007 (2008)
Cheng, X., Wu, J., Huang, D., Wang, G.: Neighbor sum distinguishing total colorings of planar graphs with maximum degree \(\varDelta \). Discrete Appl. Math. 190, 34–41 (2015)
Ding, L., Wang, G., Yan, G.: Neighbor sum distinguishing total colorings via the Combinatorial Nullstellensatz. Sci. Sin. Math. 57(9), 1875–1882 (2014)
Dong, A., Wang, G.: Neighbor sum distinguishing total colorings of graphs with bounded maximum average degree. Acta Math. Sin. 30(4), 703–709 (2014)
Huang, D., Wang, W.: Adjacent vertex distinguishing total coloring of planar graphs with large maximum degree, (in Chinese). Sci. Sin. Math. 42(2), 151–164 (2012)
Huang, P., Wong, T., Zhu, X.: Weighted-1-antimagic graphs of prime power order. Discrete Math. 312(14), 2162–2169 (2012)
Kalkowski, M., Karoński, M., Pfender, F.: Vertex-coloring edge-weightings: towards the 1–2–3-conjecture. J. Combin. Theory Ser. B 100, 347–349 (2010)
Karoński, M., Łuczak, T., Thomason, A.: Edge weights and vertex colours. J. Combin. Theory Ser. B 91(1), 151–157 (2004)
Li, H., Ding, L., Liu, B., Wang, G.: Neighbor sum distinguishing total colorings of planar graphs. J. Combin. Optim. 30(3), 675–688 (2015)
Li, H., Liu, B., Wang, G.: Neighor sum distinguishing total colorings of \(K_4\)-minor free graphs. Front. Math. China 8(6), 1351–1366 (2013)
Pilśniak, M., Woźniak, M.: On the total-neighbor-distinguishing index by sums. Graph Combin. 31(3), 771–782 (2015)
Przybyło, J.: Neighbour distinguishing edge colorings via the Combinatorial Nullstellensatz. SIAM J. Discrete Math. 27(3), 1313–1322 (2013)
Przybyło, J.: Irregularity strength of regular graphs. Electron. J. Combin 15(1), R82 (2008)
Przybyło, J.: Linear bound on the irregularity strength and the total vertex irregularity strength of graphs. SIAM J. Discrete Math. 23(1), 511–516 (2009)
Przybyło, J., Woźniak, M.: Total weight choosability of graphs. Electron. J. Combin. 18, P112 (2011)
Przybyło, J., Woźniak, M.: On a 1,2 conjecture. Discrete Math. Theor. Comput. Sci. 12(1), 101–108 (2010)
Seamone, B.: The 1-2-3 conjecture and related problems: a survey. arXiv:1211.5122
Wang, W., Huang, D.: The adjacent vertex distinguishing total coloring of planar graphs. J. Combin. Optim. 27(2), 379–396 (2014)
Wang, W., Wang, P.: On adjacent-vertex-distinguishing total coloring of \(K_4\)-minor free graphs. Sci. Sin. Math. Ser. A 39(12), 1462–1472 (2009)
Wang, Y., Wang, W.: Adjacent vertex distinguishing total colorings of outerplanar graphs. J. Combin. Optim. 19, 123–133 (2010)
Wong, T., Zhu, X.: Total weight choosability of graphs. J. Graph Theory 66, 198–212 (2011)
Wong, T., Zhu, X.: Antimagic labelling of vertex weighted graphs. J. Graph Theory 3(70), 348–359 (2012)
Zhang, Z., Chen, X., Li, J., Yao, B., Lu, X., Wang, J.: On adjacent-vertex-distinguishing total coloring of graphs. Sci. Sin. Math. Ser. A 48(3), 289–299 (2005)
Acknowledgements
This work was supported by the National Natural Science Foundation of China (11371355, 11471193, 11271006, 11631014), the Foundation for Distinguished Young Scholars of Shandong Province (JQ201501) and the Fundamental Research Funds of Shandong University.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Ding, L., Wang, G., Wu, J. et al. Neighbor Sum (Set) Distinguishing Total Choosability Via the Combinatorial Nullstellensatz. Graphs and Combinatorics 33, 885–900 (2017). https://doi.org/10.1007/s00373-017-1806-3
Received:
Revised:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00373-017-1806-3