Skip to main content
Log in

Cores and Independence Numbers of Grassmann Graphs

  • Original Paper
  • Published:
Graphs and Combinatorics Aims and scope Submit manuscript

Abstract

A graph G is a core if every endomorphism of G is an automorphism. Let \(J_q(n,m)\) be the Grassmann graph with parameters qmn. We prove that many Grassmann graphs are cores, and both \(J_2(2k,2)\) and \(J_q(2^k,2)\) are not cores. We also obtain the independence number of \(J_q(n,2)\). In further to study cores and coding theory, it is important to estimate the upper bound of the independence number of \(J_q(n,m)\). Using a vertex-transitive subgraph of \(J_q(n,m)\), we obtain upper bounds on the independence number of \(J_q(n,m)\), which are also an improvement of bounds for the size of constant dimension codes in a 2011 paper of Etzion and Vardy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Baker, R.: Partitioning the planes of \(AG_{2m}(2)\) into 2-designs. Discrete Math. 15, 205–211 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  2. Beutelspacher, A.: On parallelisms in finite projective spaces. Geom. Dedic. 3(1), 35–45 (1974)

    Article  MathSciNet  MATH  Google Scholar 

  3. Beutelspacher, A.: Blocking sets and partial spreads in finite projective spaces. Geom. Dedic. 9, 425–449 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  4. Brouwer, A.E., Cohen, A.M., Neumaier, A.: Distance-Regular Graphs. Springer, Berlin, Heidelberg, New York (1989)

    Book  MATH  Google Scholar 

  5. Cameron, P.J., Kazanidis, P.A.: Cores of symmetric graphs. J. Aust. Math. Soc. 85, 145–154 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  6. Chen, W.Y.C., Hou, Q.H.: Factors of the Gaussian coefficients. Discrete Math. 306, 1446–1449 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  7. Dembowski, P.: Finite Geometries. Springer, Berlin/Heidelberg (1968)

    Book  MATH  Google Scholar 

  8. Etzion, T., Storme, L.: Galois geometries and coding theory. Des. Codes Cryptogr. 78, 311–350 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  9. Etzion, T., Vardy, A.: Error-correcting codes in projective spaces. IEEE Trans. Inf. Theory 57, 1165–1173 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  10. Gács, A., Szőnyi, T.: On maximal partial spreads in \({{\rm PG}}(n, q)\). Des. Codes Cryptogr. 29, 123–129 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  11. Godsil, C., Royle, G.: Algebraic Graph Theory. Springer, New York, Berlin, Heidelberg (2001)

    Book  MATH  Google Scholar 

  12. Godsil, C., Royle, G.F.: Cores of geometric graphs. Ann. Comb. 15, 267–276 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  13. Hahn, G., Tardif, C.: Graph homomorphisms: structure and symmetry. In: Hahn, G., Sabidussi, G. (eds.) Graph Symmetry-Algebraic Methods and Applications, pp. 107–166. Kluwer Academic Publishers, Dordrecht/Boston (1997)

    Chapter  Google Scholar 

  14. Huang, L.-P.: Diameter preserving bijections between Grassmann spaces over Bezout domains. Geom. Dedic. 138, 1–12 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  15. Huang, L.-P., Huang, J.-Q., Zhao, K.: On endomorphisms of alternating forms graph. Discrete Math. 338, 110–121 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  16. Huang, L.-P., Huang, Z.-J., Li, C.-K., Sze, N.-S.: Graphs associated with matrices over finite fields and their endomorphisms. Linear Algebra Appl. 447, 2–25 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  17. Huang, L.-P., Lv, B.J., Wang, K.S.: The endomorphisms of Grassmann graphs. Ars Math. Contemp. 10, 383–392 (2016)

    MathSciNet  MATH  Google Scholar 

  18. Johnson, N.L.: Combinatorics of Spreads and Parallelisms. CRC Press, Taylor & Francis Group, Boca Raton (2010)

  19. Knuth, D., Wilf, H.: The power of a prime that divides a generalized binomial coefficient. J. Reine Angew. Math. 396, 212–219 (1989)

    MathSciNet  MATH  Google Scholar 

  20. Kötter, R., Kschischang, F.R.: Coding for errors and erasures in random network coding. IEEE Trans. Inf. Theory 54, 3579–3591 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  21. Pankov, M.: Geometry of Semilinear Embeddings: Relations to Graphs and Codes. World Scientific, New Jersey, London, Singapore (2015)

    Book  MATH  Google Scholar 

  22. Pullan, W., Wu, X.-W., Liu, Z.: Construction of optimal constant-dimension subspace codes. J. Comb. Optim. 31, 1709–1719 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  23. Topalova, S., Zhelezova, S.: \(2\)-spreads and transitive and orthogonal \(2\)-parallelisms of \({\rm PG}(5, 2)\). Graphs Comb. 26, 727–735 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  24. Wan, Z.-X.: Geometry of Classical Groups over Finite Fields, 2nd edn. Science Press, Beijing, New York (2002)

    Google Scholar 

  25. Zaicev, G., Zinoviev, V., Semakov, N.: Interrelation of Preparata and Hamming codes and extension of Hamming codes to new double-error-correcting codes. In: Proceedings of Second International Symposium on Information Theory (Armenia, USSR, 1971), pp. 257–263. Academiai Kiado, Budapest (1973)

  26. Zhang, H.J.: Primitivity and independent sets in direct products of vertex-transitive graphs. J. Graph Theory 67(3), 218–225 (2011)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the referees for many useful comments and suggestions. Projects 11371072, 11501036 supported by NSFC. Supported by the Fundamental Research Funds for the Central University of China, Youth Scholar Program of Beijing Normal University (2014NT31) and China Postdoctoral Science Foundation (2015M570958).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Li-Ping Huang.

Additional information

Projects 11371072, 11501036 supported by National Natural Science Foundation of China.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, LP., Lv, B. Cores and Independence Numbers of Grassmann Graphs. Graphs and Combinatorics 33, 1607–1620 (2017). https://doi.org/10.1007/s00373-017-1858-4

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00373-017-1858-4

Keywords

Mathematics Subject Classification