Skip to main content
Log in

Codes from Adjacency Matrices of Uniform Subset Graphs

  • Original Paper
  • Published:
Graphs and Combinatorics Aims and scope Submit manuscript

Abstract

Studies of the p-ary codes from the adjacency matrices of uniform subset graphs \(\varGamma (n,k,r)\) and their reflexive associates have shown that a particular family of codes defined on the subsets are intimately related to the codes from these graphs. We describe these codes here and examine their relation to some particular classes of uniform subset graphs. In particular we include a complete analysis of the p-ary codes from \(\varGamma (n,3,r)\) for \(p\ge 5\), thus extending earlier results for \(p=2,3\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. The authors thank T.P. McDonough for this observation.

References

  1. Araujo, J., Bratten, T.: On the spectrum of the Johnson graphs \({J}(n,k,r)\). In: Proceedings of the XXIIrd “Dr. Antonio A. R. Monteiro” Congress, pp. 57–62 (2016). Univ. Nac. Sur Dep. Mat. Inst. Mat., Baha Blanca, 2015

  2. Assmus Jr., E.F., Key, J.D.: Designs and Their Codes. Cambridge University Press, Cambridge (1992). Cambridge Tracts in Mathematics, Vol. 103 (Second printing with corrections, 1993)

    Book  MATH  Google Scholar 

  3. Bosma, W., Cannon, J., Playoust, C.: The Magma algebra system I: the user language. J. Symb. Comput. 24(3/4), 235–265 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  4. Brouwer, A., Haemers, W.: Association schemes. In: Graham, R., Grötschel, M., Lovász, L. (eds.) Handbook of Combinatorics, Chapter 15, Vol. 1, pp. 749–771. Elsevier; MIT, Cambridge (1995)

  5. Cannon, J., Steel, A., White, G.: Linear codes over finite fields. In: Cannon, J., Bosma, W. (eds.) Handbook of Magma Functions, pp. 3951–4023. Computational Algebra Group, Department of Mathematics, University of Sydney (2006). V2.13. http://magma.maths.usyd.edu.au/magma

  6. Delsarte, P.: An Algebraic Approach to the Association Schemes of Coding Theory. Tech. rep., Philips Research Laboratorie (1973). Philips Research Reports, Supplement No. 10

  7. Delsarte, P., Levenshtein, V.I.: Association schemes and coding theory. IEEE Trans. Inf. Theory 44, 2477–2504 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  8. Fish, W.: Codes from uniform subset graphs and cycle products. Ph.D. thesis, University of the Western Cape (2007)

  9. Fish, W.: Binary codes and partial permutation decoding sets from the Johnson graphs. Graphs Comb. 31, 1381–1396 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  10. Fish, W., Fray, R., Mwambene, E.: Binary codes and partial permutation decoding sets from the odd graphs. Cent. Eur. J. Math. 12(9), 1362–1371 (2014)

    MathSciNet  MATH  Google Scholar 

  11. Fish, W., Key, J.D., Mwambene, E.: Ternary codes from reflexive graphs on \(3\)-sets. Appl. Algebra Eng. Commun. Comput. 25, 363–382 (2014)

    Article  MATH  Google Scholar 

  12. Fish, W., Key, J.D., Mwambene, E.: Binary codes from reflexive graphs on \(3\)-sets. Adv. Math. Commun. 9, 211–232 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  13. Huffman, W.C.: Codes and groups. In: Pless, V.S., Huffman, W.C. (eds.) Handbook of Coding Theory, vol. 2, Part 2, Chapter 17, pp. 1345–1440. Elsevier, Amsterdam (1998)

  14. Key, J.D., Moori, J., Rodrigues, B.G.: Binary codes from graphs on triples. Discret. Math. 282(1–3), 171–182 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  15. Key, J.D., Moori, J., Rodrigues, B.G.: Ternary codes from graphs on triples. Discret. Math. 309, 4663–4681 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  16. Key, J.D., Rodrigues, B.G.: \(LCD\) codes from adjacency matrices of graphs. (To appear) Appl. Algebra Eng. Commun. Comput. https://doi.org/10.1007/s00200-017-0339-6

  17. Kirkman, T.P.: On a problem in combinations. Camb. Dublin Math. J. 2, 191–204 (1847)

    Google Scholar 

  18. Krebs, M., Shaheen, A.: On the spectra of Johnson graphs. Electron. J. Linear Algebra 17, 154–167 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  19. Massey, J.L.: Linear codes with complementary duals. Discret. Math. 106(107), 337–342 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  20. Moore, E.H.: Concerning triple systems. Math. Ann. 43, 271–285 (1893)

    Article  MathSciNet  MATH  Google Scholar 

  21. Peeters, R.: On the \(p\)-ranks of the adjacency matrices of distance-regular graphs. J. Algebraic Comb. 15, 127–149 (2002)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. D. Key.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fish, W., Key, J.D. & Mwambene, E. Codes from Adjacency Matrices of Uniform Subset Graphs. Graphs and Combinatorics 34, 163–192 (2018). https://doi.org/10.1007/s00373-017-1862-8

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00373-017-1862-8

Keywords

Mathematics Subject Classification

Navigation