Skip to main content
Log in

On \(\alpha \)-Domination in Graphs

  • Original Paper
  • Published:
Graphs and Combinatorics Aims and scope Submit manuscript

Abstract

Let \(G=(V,E)\) be an isolate-free graph. For some \(\alpha \) with \(0<\alpha \le 1\), a subset S of V is said to be an \(\alpha \) -dominating set if for all \(v \in V {\setminus } S, |N(v)\cap S|\ge \alpha |N(v)|\). The size of a smallest such S is called the \(\alpha \) -domination number and is denoted by \(\gamma _{\alpha }(G)\). A set \(S\subseteq V\) is said to be an \(\alpha \) -rate dominating set of G if for any vertex \(v \in V\), \(|N[v] \cap X|\ge \alpha |N(v)|\). The minimum cardinality of an \(\alpha \)-rate dominating set of G is called the \(\alpha \) -rate domination number \(\gamma _{\times \alpha }(G)\). The set of distinct values of \(\gamma _\alpha (G)\) as \(\alpha \) runs over (0, 1] is called the \(\alpha \)-domination spectrum of a graph G, i.e., \(\mathsf {Sp}_\alpha (G) = \{\gamma _\alpha (G): \alpha \in (0,1]\}\). In this paper, we study some properties of \(\mathsf {Sp}_\alpha (G)\) and show that \(\gamma _\alpha (G)\) changes its value only at rational points as \(\alpha \) runs over (0, 1]. Using this result, we characterize some values of \(\alpha \) such that \(\gamma _\alpha (G) \le n\alpha \), where n is the number of vertices in G, holds. Finally, we present some improved probabilistic upper bounds of \(\alpha \)-domination number and \(\alpha \)-rate domination number of a graph G.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Notes

  1. The original definition of \(\alpha \)-domination does not require the graph to be isolate-free. But this condition is imposed to ensure \(\gamma (G)\le \gamma _\alpha (G)\). See Concluding Remarks in [13].

References

  1. Alon, N., Spencer, J.: The probabilistic method. In: Wiley-Interscience Series in Discrete Mathematics and Optimization. Wiley, Chichester (2000)

  2. Caro, Y.: New results on the independence number. In: Technical Report, Tel-Aviv University (1979)

  3. Dahme, F., Rautenbach, D., Volkmann, L.: \(\alpha \)-Domination perfect trees. Discrete Appl. Math. 308, 3187–3198 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  4. Dahme, F., Rautenbach, D., Volkmann, L.: Some remarks on \(\alpha \)-domination. Discuss. Math. Graph Theory 24, 423–430 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  5. Dreyer, P.A., Roberts, F.S.: Irreversible \(k\)-threshold processes: graph-theoretical threshold models of the spread of disease and of opinion. Discrete Appl. Math. 157, 1615–1627 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  6. Dunbar, J.E., Hoffman, D.G., Laskar, R.C., Markus, L.R.: \(\alpha \)-Domination. Discrete Math. 211, 11–26 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  7. Gagarin, A., Poghosyan, A., Zverovich, V.E.: Upper bounds for alpha-domination parameters. Graphs Comb. 25(4), 513–520 (2009)

    Article  MATH  Google Scholar 

  8. Haynes, T.W., Hedetniemi, S.T., Slater, P.J.: Fundamentals of Domination in Graphs. Marcel Dekker Inc., New York (1998)

    MATH  Google Scholar 

  9. Haynes, T.W., Hedetniemi, S.T., Slater, P.J. (eds): Domination in Graphs: Advanced Topics. Marcel Dekker Inc., New York (1998)

  10. Peleg, D.: Local majorities, coalitions and monopolies in graphs. Theor. Comput. Sci. 282, 231–257 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  11. Rad, N.J., Volkmann, L.: Edge-removal and edge-addition in \(\alpha \)-domination. Graphs Comb. 32, 1155–1166 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  12. Rad, N.J., Volkmann, L.: Vertex-removal in \(\alpha \)-domination. Filomat 36(6), 1257–1262 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  13. Tuza, Z.: Highly connected counterexamples to a conjecture on \(\alpha \)-domination. Discuss. Math. Graph Theory 25, 435–440 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  14. Volkmann, L.: On graphs with equal domination and covering numbers. Discrete Appl. Math. 51, 211–217 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  15. Wei, V.K.: A lower bound on the stability number of a simple graph. In: Bell Laboratories Technical Memorandum 81-11217-9, Murray Hill (1981)

  16. West, D.B.: Introduction to Graph Theory. Prentice Hall, London (2001)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Angsuman Das.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Das, A., Laskar, R.C. & Rad, N.J. On \(\alpha \)-Domination in Graphs. Graphs and Combinatorics 34, 193–205 (2018). https://doi.org/10.1007/s00373-017-1869-1

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00373-017-1869-1

Keywords

Mathematics Subject Classification

Navigation