Skip to main content
Log in

The Full Automorphism Groups, Determining Sets and Resolving Sets of Coprime Graphs

  • Original Paper
  • Published:
Graphs and Combinatorics Aims and scope Submit manuscript

Abstract

The coprime graph is a graph \(TCG_n\) whose vertex set is \(\{1, 2, 3,\ldots ,n\}\), with two vertices i and j joined by an edge if and only if \(\hbox {gcd}(i, j)= 1\). In this paper we first determine the full automorphism group of the coprime graph, and then find the regularities for a set becoming a determining set or a resolving set in a coprime graph. Finally, we show that minimal determining sets of coprime graphs satisfy the exchange property and minimal resolving sets of coprime graphs do not satisfy the exchange property.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ahlswede, R., Khachatrian, L.H.: On extremal sets without coprimes. Acta Arith. 66, 89–99 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  2. Ahlswede, R., Khachatrian, L.H.: Maximal sets of numbers not containing k+1 pairwise coprime integers. Acta Arith. 72, 77–100 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  3. Ahlswede, R., Khachatrian, L.H.: Sets of integers and quasi-integers with pairwise common divisors and a factor from a specified set of primes. Acta Arith. 75(3), 259–276 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  4. Ahlswede, R., Blinovsky, V.: Maximal sets of numbers not containing k+1 pairwise coprimes and having divisors from a specified set of primes. J. Combin. Theory Ser. A 113, 1621–1628 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  5. Albertson, M.O., Boutin, D.L.: Using determining sets to distinguish Kneser graphs. Electron. J. Combin. 14(1), 9 (2007) (Research Paper 20)

  6. Albertson, M.O., Boutin, D.L.: Automorphisms and distinguishing numbers of geometric cliques. Discrete Comput. Geom. 39(4), 778–785 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  7. Bailey, R.F., Cameron, P.J.: Base size, metric dimension and other invariants of groups and graphs. Bull. Lond. Math. Soc. 43(2), 209–242 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  8. Biggs, N.: Algebraic Graph Theory, 2nd edn. Cambridge University Press, Cambridge (1993)

    MATH  Google Scholar 

  9. Boutin, D.L.: Identifying graph automorphisms using determining sets. Electron. J. Combin. 13(1), 12 (2006) (Research Paper 78)

  10. Boutin, D.L.: Determining sets, resolving sets, and the exchange property. Graphs Combin. 25(6), 789–806 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  11. Cameron, P.J., Fon-Der-Flaass, D.G.: Bases for permutation groups and matroids. Eur. J. Combin 16(6), 537–544 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  12. Chartrand, G., Eroh, L., Johnson, M.A., Oellermann, O.R.: Resolvability in graphs and the metric dimension of a graph. Discrete Appl. Math 105, 99–113 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  13. Dixon, J.D., Mortimer, B.: Permutation Groups, vol. 163, Graduate Texts in Mathematics. Springer, New York (1996)

    Google Scholar 

  14. Erdös, P.: Remarks in number theory, IV (in Hungarian). Mat. Lapok 13, 228–255 (1962)

    MathSciNet  MATH  Google Scholar 

  15. Erdös, P., Sarkozy, G.N.: On cycles in the coprime graph of integers. Electron. J. Combin. 4(2), 11 (1997) (Research Paper 8, approx.)

  16. Erwin, D., Harary, F.: Destroying automorphisms by fixing nodes. Discrete Math. 306, 3244–3252 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  17. Graham, R.L., Gräotschel, M., Lovàsz, L. (eds.): Handbook of Combinatorics, vol. I, MIT Press, Cambridge (1995)

  18. Meher, J., Murty, M.R.: Ramanujan’s proof of Bertrand’s postulate. Am. Math. Mon. 120(7), 650–653 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  19. Pan, C., Pan, C.: Elementary number theory, 2th edn, Peking University Press, Beijing (2003) (Chinese)

  20. Pomerance, C., Selfridge, J.L.: Proof of D. J. Newmans coprime mapping conjecture. Mathematika 27, 69–83 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  21. Rao, S.N.: A creative review on coprime (prime) graphs. In: Lecture Notes, DST Work Shop (23–28 May 2011), WGTA, BHU, Varanasi, pp. 1–24 (2011)

  22. Reinhard, D.: Graph Theory, 2nd edn. Springer, New York (1997)

    MATH  Google Scholar 

  23. Sander, J.W., Sander, T.: On the kernel of the coprime graph of integers. Integers 9, 569–579 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  24. Slater, P.J.: Leaves of trees. Congr. Numer. 14, 549–559 (1975)

    MathSciNet  MATH  Google Scholar 

  25. Tomescu, I., Imran, M.: R-sets and metric dimension of necklace graphs. Appl. Math. Inf. Sci 9(1), 63–67 (2015)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the referees for their valuable suggestions and useful comments contributed to the final version of this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiuyun Guo.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The research of the work was partially supported by the National Natural Science Foundation of China (11771271).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pan, J., Guo, X. The Full Automorphism Groups, Determining Sets and Resolving Sets of Coprime Graphs. Graphs and Combinatorics 35, 485–501 (2019). https://doi.org/10.1007/s00373-019-02014-5

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00373-019-02014-5

Keywords

Mathematics Subject Classification

Navigation