Skip to main content
Log in

Alon–Tarsi Number and Modulo Alon–Tarsi Number of Signed Graphs

  • Original Paper
  • Published:
Graphs and Combinatorics Aims and scope Submit manuscript

Abstract

We extend the concept of the Alon–Tarsi number for unsigned graph to signed one. Moreover, we introduce the modulo Alon–Tarsi number for a prime number p. We show that both the Alon–Tarsi number and modulo Alon–Tarsi number of a signed planar graph \((G,\sigma )\) are at most 5, where the former result generalizes Zhu’s result for unsigned case and the latter one implies that \((G,\sigma )\) is \({\mathbb {Z}}_5\)-colorable.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Alon, N.: Combinatorial Nullstellensatz. Combin. Probab. Comput. 8, 7–29 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  2. Alon, N., Tarsi, M.: Colorings and orientations of graphs. Combinatorica 12(2), 125–134 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  3. Hefetz, D.: On two generalizations of the Alon–Tarsi polynomial method. J. Combin. Theory Ser. B 101, 403–414 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  4. Hu, L., Li, X.: Every signed planar graph without cycles of length from 4 to 8 is 3-colorable. Discrete Math. 341, 513–519 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  5. Jaeger, F., Linial, N., Payan, C., Tarsi, M.: Group connectivity of graphs—a nonhomogeneous analogue of nowhere-zero flow properties. J. Combin. Theory Ser. B 56, 165–182 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  6. Jensen, T., Toft, B.: Graph Coloring Problems. Wiley, New York (1995)

    MATH  Google Scholar 

  7. Jin, L., Kang, Y., Steffen, E.: Choosability in signed planar graphs. Eur. J. Combin. 52, 234–243 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  8. Kang, Y., Steffen, E.: Circular coloring of signed graphs. J. Graph Theory 87, 135–148 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  9. Král’, D., Pangrác, O., Voss, H.J.: A Note on group colorings. J. Graph Theory 50, 123–129 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  10. Lai, H.-J., Zhang, X.: Group chromatic number of graphs without \(K_5\) minors. Graphs Combin. 18, 147–154 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  11. Máčajová, E., Raspaud, A., Škoviera, M.: The chromatic number of a signed graph. Electron. J. Combin. 23, #P1.14 (2016)

    MathSciNet  MATH  Google Scholar 

  12. Ramamurthi, R., West, D.B.: Hypergraph extension of the Alon–Tarsi list coloring theorem. Combinatorica 25, 355–366 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  13. Schweser, T., Stiebitz, M.: Degree choosable signed graphs. Discrete Math. 340, 882–891 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  14. Thomassen, C.: Every planar graph is 5-choosable. J. Combin. Theory Ser. B 62(1), 180–181 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  15. Zhu, X.: The Alon–Tarsi number of planar graphs. J. Combin. Theory Ser. B 134, 354–358 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  16. Zaslavsky, T.: Signed graph coloring. Discrete Math. 39, 215–228 (1982)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

We would like to thank the anonymous referee for many helpful comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianguo Qian.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supported by the National Natural Science Foundation of China under Grant nos. 11471273 and 11561058.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, W., Qian, J. & Abe, T. Alon–Tarsi Number and Modulo Alon–Tarsi Number of Signed Graphs. Graphs and Combinatorics 35, 1051–1064 (2019). https://doi.org/10.1007/s00373-019-02056-9

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00373-019-02056-9

Keywords

Mathematics Subject Classification

Navigation