Skip to main content
Log in

Doubly Resolvable Canonical Kirkman Packing Designs and its Applications

  • Original Paper
  • Published:
Graphs and Combinatorics Aims and scope Submit manuscript

Abstract

Let \(v \equiv 4 \pmod 6\) and \(v\ge 4\). A canonical Kirkman packing design of order v, denoted by \(\hbox {CKPD}(v)\), is a resolvable packing with \(r=(v-4)/2\) parallel classes such that (i) each parallel class consists of a size 4 block and \((v- 4)/3\) triples; (ii) the leave consists of the union of \((v- 4)/2\) vertex-disjoint edges and a \(K_4\) with no vertices in common with those edges. A canonical Kirkman packing design is said to be doubly resolvable if there exist a pair of orthogonal resolutions. A doubly resolvable packing design is the generalization of the Kirkman square, which is inextricably bound up with the existence of some constant weight codes such as constant composition codes and permutation codes, etc. In this paper, we establish the spectra of doubly resolvable \(\hbox {CKPD}(v)\hbox {s}\) with 36 possible exceptions for v. As its direct application, a class of permutation codes are obtained.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abel, R.J.R., Colbourn, C.J., Dinitz, J.H.: Mutually orthogonal Latin squares (MOLS). In: Colbourn, C.J., Dinitz, J.H. (eds.) The CRC Handbook of Combinatorial Designs, 2nd edn, pp. 160–193. CRC Press, Boca Raton (2007)

    Google Scholar 

  2. Abel, R.J.R., Chan, N., Colbourn, C.J., Lamken, E.R., Wang, C., Wang, J.: Doubly resolvable nearly Kirkman triple systems. J. Comb. Des. 21, 342–358 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  3. Abel, R.J.R., Lamken, E.R., Wang, J.: A few more Kirkman squares and doubly resolvable BIBDs with block size 3. Discret. Math. 308, 1102–1123 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  4. Baker, R.D.: Orthogonal line packings of \(PG_{2^{m-1}} (2)\). J. Comb. Theory Ser. A 36, 245–248 (1984)

    Article  Google Scholar 

  5. Baker, R.D., Wilson, R.M.: Nearly Kirkman triple systems. Util. Math. 11, 289–296 (1977)

    MathSciNet  MATH  Google Scholar 

  6. Bierbrauer, J., Metsch, K.: A bound on permutation codes. Electron. J. Comb. 20, P6, 12 (2013)

    MathSciNet  MATH  Google Scholar 

  7. Brouwer, A.E.: Two new nearly Kirkman triple systems. Util. Math. 13, 311–314 (1978)

    MathSciNet  MATH  Google Scholar 

  8. Cao, H., Du, B.: Kirkman packings \(\text{ KPD }(\{w, s^*\}, v)\). Discret. Math. 281, 83–95 (2004)

    Article  MATH  Google Scholar 

  9. Cao, H., Tang, Y.: Kirkman packings designs \(\text{ KPD }(\{3,4\}, v)\). Discret. Math. 279, 121–133 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  10. Cao, H., Zhu, L.: Kirkman packings \(\text{ KPD }(\{3,5^*\}, v)\). Des. Codes Cryptogr. 26, 127–138 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  11. Černý, A., Horák, P., Wallis, W.D.: Kirkman’s school project. Discret. Math. 167/168, 189–196 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  12. Colbourn, C.J., Curran, D., Vanstone, S.A.: Recursive constructions for Kirkman squares with block size 3. Util. Math. 32, 169–174 (1987)

    MathSciNet  MATH  Google Scholar 

  13. Colbourn, C.J., Horsley, D., Wang, C.: Colouring triples in every way: a conjecture. Quaderni di Matematica 28, 257–286 (2012)

    MathSciNet  Google Scholar 

  14. Colbourn, C.J., Kløve, T., Ling, A.C.H.: Permutation arrays for powerline communication and mutually orthogonal Latin squares. IEEE Trans. Inf. Theory 50, 1289–1291 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  15. Colbourn, C.J., Lamken, E.R., Ling, A.C.H., Mills, W.H.: The existence of Kirkman squares -doubly resolvable \((v,3,1)\)-BIBDs. Des. Codes Cryptogr. 26, 169–196 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  16. Colbourn, C.J., Ling, A.C.H.: Kirkman school project designs. Discret. Math. 203, 49–60 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  17. de la Torre, D.R., Colbourn, C.J., Ling, A.C.H.: An application of permutation arrays to block ciphers. Cong. Numer. 145, 5–7 (2000)

    MathSciNet  MATH  Google Scholar 

  18. Ding, C., Yin, J.: Combinatorial constructions of optimal constant composition codes. IEEE Trans. Inf. Theory 51, 3671–3674 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  19. Ding, C., Fu, F.W., Kløve, K., Wei, V.W.K.: Constructions of permutation arrays. IEEE Trans. Inf. Theory 48, 977–980 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  20. Du, J., Abel, R.J.R., Wang, J.: Some new resolvable GDDs with \(k = 4\) and doubly resolvable GDDs with \(k = 3\). Discret. Math. 338, 2105–2118 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  21. Etzion, T.: Optimal doubly constant weight codes. J. Comb. Des. 16, 137–151 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  22. Fuji-Hara, R., Vanstone, S.A.: The existence of orthogonal resolutions of lines in \(\text{ AG }(n, q)\). J. Comb. Theory Ser. A 45, 139–147 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  23. Ling, A.C.H., Zhu, X.J., Colbourn, C.J., Mullin, R.C.: Pairwise balanced designs with consecutive block sizes. Des. Codes Cryptogr. 10, 203–222 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  24. Mathon, R., Vanstone, S.A.: Doubly resolvable Kirkman systems. Congr. Numer. 29, 611–125 (1980)

    MathSciNet  MATH  Google Scholar 

  25. Mathon, R., Vanstone, S.A.: On the existence of doubly resolvable Kirkman systems and equidistant permutation arrays. Discret. Math. 30, 157–172 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  26. Pavlidou, N., Vinck, A.J.H., Yazdani, J., Honary, B.: Power line communications: state of the art and future trends. IEEE Commun. Mag. 41, 34–40 (2003)

    Article  Google Scholar 

  27. Phillips, N.C.K., Wallis, W.D., Rees, R.S.: Kirkman packing and covering designs. J. Comb. Math. Comb. Comput. 28, 299–325 (1998)

    MathSciNet  MATH  Google Scholar 

  28. Ray-Chaudhuri, D.K., Wilson, R.M.: Solution of Kirkman’s schoolgirl problem. Am. Math. Soc. Symp. Pure Math. 19, 187–203 (1971)

    MathSciNet  MATH  Google Scholar 

  29. Rees, R., Stinson, D.R.: On resolvable group-divisible designs with block size three. Ars Comb. 23, 107–120 (1987)

    MATH  Google Scholar 

  30. Rosa, A., Vanstone, S.A.: Starter-adder techniques for Kirkman squares and Kirkman cubes of small sides. Ars Comb. 14, 199–212 (1982)

    MathSciNet  MATH  Google Scholar 

  31. Rosa, A., Vanstone, S.A.: On the existence of strong Kirkman cubes of order 39 and block size 3. Ann. Discret. Math. 26, 309–320 (1983)

    MathSciNet  Google Scholar 

  32. Smith, P.: A doubly divisible nearly Kirkman system. Discret. Math. 18, 93–96 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  33. Stinson, D.R., Vanstone, S.A.: A Kirkman square of order 51 and block size 3. Discret. Math. 35, 107–111 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  34. Tonchev, V.D., Vanstone, S.A.: On Kirkman triple systems of order 33. Discret. Math. 106/107, 493–496 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  35. Vanstone, S.A.: Doubly resolvable designs. Discret. Math. 29, 77–86 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  36. Vanstone, S.A.: On mutually orthogonal resolutions and near resolutions. Ann. Discret. Math. 15, 357–369 (1982)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The author is grateful to the referees for their careful reading of the original version of this paper, their detailed comments and the suggestions that much improved the quality of this paper. This research was carried out while the author was visiting the University of Tsukuba. She wishes to express her gratitude to Prof. Miao and the Faculty of Engineering, Information and Systems for their hospitality.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Su Wang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Research supported by the National Natural Science Foundation of China under Grant no. 11371207.

Appendix

Appendix

Here, using the method in Lemma 8, we provide starter blocks and adders for DRCKPDs of orders \(6u+4\) with \(5 \le u \le 14\).

u

Starter

Adder

\(\hbox {Starter}+ \hbox {adder}\)

Starter

Adder

\(\hbox {Starter}+ \hbox {adder}\)

5

\(\{ 4, 5, 10,15\}\)

0

\(\{ 4 , 5 , 10 , 15\}\)

\(\{ 8 , 21 ,25\}\)

8

\(\{ 16 , 29 , 3\}\)

\(\{ 0 , 9 , 27 \}\)

28

\(\{28 , 7 ,25\}\)

\(\{11 , 18, \infty _1\}\)

20

\(\{ 1 , 8, \infty _1\}\)

\(\{ 1 , 7 , 29\}\)

12

\(\{13 , 19 , 11\}\)

\(\{12 , 19 , \infty _2\}\)

2

\(\{ 14 , 21, \infty _2\}\)

\(\{ 2 , 16 , 20\}\)

10

\(\{12, 26 , 0\}\)

\(\{ 13 , 22, \infty _3\}\)

14

\(\{ 27 , 6, \infty _3\}\)

\(\{ 3 , 14 , 17\}\)

6

\(\{9 , 20 , 23\}\)

\(\{23 , 24, \infty _4\}\)

24

\(\{17 , 18, \infty _4\}\)

\(\{ 6 , 26 , 28 \}\)

26

\(\{2 , 22 , 24\}\)

   

6

\(\{ 5 , 8 , 12 , 35\}\)

0

\(\{5 , 8 , 12 ,35\}\)

\(\{ 11 , 25 , 30\}\)

34

\(\{9 , 23 , 28\}\)

\(\{0 , 1 , 2 \}\)

30

\(\{30 , 31 , 32\}\)

\(\{13 , 15 , 23\}\)

24

\(\{1 , 3 , 11\}\)

\(\{3 , 7 ,19\}\)

14

\(\{17 , 21 , 33\}\)

\(\{17 , 34 , \infty _1\}\)

26

\(\{7 , 24, \infty _1\}\)

\(\{4 , 14 , 28 \}\)

12

\(\{16 , 26 , 4\}\)

\(\{18 , 33, \infty _2\}\)

18

\(\{0 , 15, \infty _2\}\)

\(\{ 6 , 22 , 31\}\)

32

\(\{2 , 18 , 27\}\)

\(\{20 , 27, \infty _3\}\)

2

\(\{22 , 29, \infty _3\}\)

\(\{ 9 , 24 , 32\}\)

10

\(\{19 , 34 , 6\}\)

\(\{26 , 29 , \infty _4\}\)

20

\(\{10 , 13, \infty _4\}\)

\(\{ 10 , 16 , 21\}\)

4

\(\{14 , 20 ,25\}\)

   

7

\(\{1 , 18 , 33 , 34\}\)

0

\(\{1 , 18 , 33, 34\}\)

\(\{15 , 27 , 40\}\)

32

\(\{ 5 , 17 , 30\}\)

\(\{0 , 2 , 3\}\)

38

\(\{38 , 40 , 41\}\)

\(\{16 , 23 , 30\}\)

12

\(\{ 28 , 35 , 0\}\)

\(\{4 , 8 , 14\}\)

8

\(\{12 , 16 , 22\}\)

\(\{17 , 25 , 31\}\)

36

\(\{ 11 , 19 , 25\}\)

\(\{5 , 7 , 10\}\)

22

\(\{27 , 29 , 32\}\)

\(\{19 , 28, \infty _1\}\)

18

\(\{ 37 , 4, \infty _1\}\)

\(\{6 , 11 , 29\}\)

2

\(\{8 , 13 , 31\}\)

\(\{21 , 36, \infty _2\}\)

30

\(\{9 , 24, \infty _2\}\)

\(\{9 , 20 , 38\}\)

6

\(\{15 , 26 , 2\}\)

\(\{22 , 41, \infty _3\}\)

40

\(\{20 , 39, \infty _3\}\)

\(\{12 , 24 , 32\}\)

24

\(\{36 , 6 , 14\}\)

\(\{26 , 37, \infty _4\}\)

26

\(\{10 , 21, \infty _4\}\)

\(\{13 , 35 , 39\}\)

10

\(\{23 , 3 , 7\}\)

   

8

\(\{15 , 24 , 30 , 43\}\)

0

\(\{15 , 24 , 30 , 43\}\)

\(\{9 , 12 , 22\}\)

4

\(\{13 , 16 , 26\}\)

\(\{20 , 29 , 40\}\)

26

\(\{46 , 7 ,18\}\)

\(\{10 , 32 , 39\}\)

30

\(\{40 , 14 , 21\}\)

\(\{19 , 31 ,37\}\)

10

\(\{ 29 , 41 , 47\}\)

\(\{13 , 35 , 45\}\)

36

\(\{ 1 , 23 , 33\}\)

\(\{17 , 25 , 42\}\)

34

\(\{3 , 11 , 28\}\)

\(\{14 , 28 ,46\}\)

24

\(\{ 38 , 4 , 22\}\)

\(\{0 , 1 , 2 \}\)

8

\(\{8 , 9 , 10\}\)

\(\{16 , 27, \infty _1\}\)

18

\(\{ 34 , 45, \infty _1\}\)

\(\{3 , 5 , 36\}\)

14

\(\{17 , 19 , 2\}\)

\(\{18 , 23, \infty _2\}\)

2

\(\{20 , 25, \infty _2\}\)

\(\{4 , 8 , 44\}\)

40

\(\{44 , 0 ,36\}\)

\(\{21 , 26, \infty _3\}\)

16

\(\{37 , 42, \infty _3\}\)

\(\{6 ,33 , 47\}\)

6

\(\{12 , 39 , 5\}\)

\(\{38 , 41, \infty _4\}\)

42

\(\{32 , 35, \infty _4\}\)

\(\{7 , 11 , 34\}\)

20

\(\{27 , 31 , 6\}\)

   

9

\(\{6 , 19 , 35 , 36\}\)

0

\(\{6 , 19 , 35 , 36\}\)

\(\{2 , 17 , 23\}\)

30

\(\{32 , 47, 53\}\)

\(\{7 , 9 , 27\}\)

2

\(\{9 , 11 , 29\}\)

\(\{4 , 8 , 43\}\)

38

\(\{42 , 46 , 27\}\)

\(\{5 , 47 , 50\}\)

32

\(\{37 , 25 , 28\}\)

\(\{11 , 37 , 42\}\)

22

\(\{33 , 5 , 10\}\)

\(\{3 , 10 , 53\}\)

40

\(\{43 , 50 , 39\}\)

\(\{12 , 13, 34\}\)

28

\(\{40 , 41 , 8\}\)

\(\{21 , 31 , 44\}\)

36

\(\{3 ,13, 26\}\)

\(\{16 , 22 , 41\}\)

8

\(\{24 , 30 , 49\}\)

\(\{18 , 26 , 38\}\)

50

\(\{14 , 22, 34\}\)

\(\{28 , 45, \infty _1\}\)

26

\(\{ 0 , 17, \infty _1\}\)

\(\{15 , 24 , 29\}\)

46

\(\{7 , 16 , 21\}\)

\(\{32 , 39, \infty _2\}\)

12

\(\{44 , 51, \infty _2\}\)

\(\{20 , 30 , 48\}\)

18

\(\{38 , 48 , 12\}\)

\(\{40 , 51, \infty _3\}\)

34

\(\{20 , 31, \infty _3\}\)

\(\{0 , 14 , 52\}\)

4

\(\{4 , 18 , 2\}\)

\(\{46 , 49, \infty _4\}\)

6

\(\{ 52 , 1, \infty _4\}\)

\(\{1 , 25 , 33\}\)

44

\(\{45 , 15 , 23\}\)

   

10

\(\{0 , 11 , 49 , 50\}\)

0

\(\{0 , 11 , 49 , 50\}\)

\(\{3 , 32, 51\}\)

6

\(\{9 ,38 , 57\}\)

\(\{20 , 25 , 40\}\)

2

\(\{22 , 27 , 42\}\)

\(\{4 , 39 , 58\}\)

14

\(\{18 , 53, 12\}\)

\(\{16 , 18 , 44\}\)

8

\(\{24 , 26 , 52\}\)

\(\{6 , 21 , 48 \}\)

26

\(\{32 , 47, 14\}\)

\(\{13 , 53 , 56\}\)

12

\(\{25 , 5 , 8\}\)

\(\{7 , 41 , 43\}\)

34

\(\{41 ,15 ,17\}\)

\(\{12 , 24 , 28\}\)

16

\(\{28 , 40 , 44\}\)

\(\{9 , 27 , 59\}\)

52

\(\{1 , 19 ,51\}\)

\(\{8 , 33 , 37\}\)

58

\(\{6 , 31 , 35\}\)

\(\{ 15 , 23 , 36\}\)

40

\(\{55 , 3 , 16\}\)

\(\{2 , 5 , 10\}\)

54

\(\{56 , 59 , 4\}\)

\(\{17 , 26, \infty _1\}\)

28

\(\{45 , 54, \infty _1\}\)

\(\{22 , 31 , 45\}\)

36

\(\{58 , 7 , 21\}\)

\(\{29 , 46, \infty _2\}\)

44

\(\{13 , 30, \infty _2\}\)

\(\{19 , 35 ,42 \}\)

4

\(\{23, 39 , 46\}\)

\(\{30 , 57, \infty _3\}\)

32

\(\{2 , 29, \infty _3\}\)

\(\{14 , 38 , 52 \}\)

56

\(\{10 ,34, 48\}\)

\(\{34 ,47, \infty _4\}\)

46

\(\{20 , 33, \infty _4\}\)

\(\{1 , 54 , 55\}\)

42

\(\{43, 36, 37\}\)

   

u

Starter

Adder

\(\hbox {Starter}+ \hbox {adder}\)

Starter

Adder

\(\hbox {Starter}+ \hbox {adder}\)

11

\(\{0 , 9 , 49 , 50\}\)

0

\(\{0 , 9 , 49 ,50\}\)

\(\{4 , 31 , 42\}\)

56

\(\{60, 21 , 32\}\)

\(\{28, 33 , 57\}\)

2

\(\{30 ,35 , 59\}\)

\(\{14, 21 , 40\}\)

24

\(\{38, 45 , 64\}\)

\(\{15 , 36 ,47\}\)

52

\(\{1 , 22 , 33\}\)

\(\{8 , 16 , 38\}\)

36

\(\{44 , 52 , 8\}\)

\(\{19 ,46 , 63\}\)

54

\(\{7 , 34, 51\}\)

\(\{11 , 39 , 54\}\)

14

\(\{25 , 53, 2\}\)

\(\{32 , 51 , 64\}\)

38

\(\{4 ,23 ,36\}\)

\(\{2, 58 , 61\}\)

4

\(\{6 , 62 , 65\}\)

\(\{13 , 29, 65\}\)

64

\(\{11 , 27, 63\}\)

\(\{20 ,22, 34 \}\)

58

\(\{12, 14, 26\}\)

\(\{30 , 43 , 48\}\)

28

\(\{58 , 5 , 10\}\)

\(\{23 , 26 , 41\}\)

16

\(\{39, 42 , 57\}\)

\(\{12 , 18 , 55\}\)

6

\(\{18 ,24 , 61\}\)

\(\{24 , 59, \infty _1\}\)

22

\(\{46 , 15, \infty _1\}\)

\(\{5 , 17 , 25\}\)

12

\(\{17, 29 , 37\}\)

\(\{35 , 60, \infty _2\}\)

62

\(\{31 , 56, \infty _2\}\)

\(\{1 , 3 , 7\}\)

40

\(\{41, 43, 47\}\)

\(\{44 , 45, \infty _3\}\)

10

\(\{54 , 55, \infty _3\}\)

\(\{6 , 27 , 37\}\)

42

\(\{48 , 3 , 13\}\)

\(\{53 , 62, \infty _4\}\)

32

\(\{19 ,28, \infty _4\}\)

\(\{10 , 52 , 56\}\)

30

\(\{40 ,16 , 20\}\)

   

12

\(\{0 , 9 , 49 , 50\}\)

0

\(\{0 , 9 , 49 ,50\}\)

\(\{14 , 26, 43\}\)

10

\(\{24, 36 , 53\}\)

\(\{2 , 35 ,39\}\)

66

\(\{68 , 29 , 33\}\)

\(\{11 , 41 , 65\}\)

26

\(\{37 ,67, 19\}\)

\(\{18 , 24, 45\}\)

40

\(\{58, 64 ,13\}\)

\(\{8 , 40 , 63\}\)

44

\(\{52 , 12, 35\}\)

\(\{7 ,34 , 68\}\)

64

\(\{71 , 26 ,60\}\)

\(\{21 , 37 , 47\}\)

4

\(\{25 , 41 , 51\}\)

\(\{1 , 16 ,29\}\)

30

\(\{31 , 46 ,59\}\)

\(\{23, 25 , 36\}\)

20

\(\{43 ,45 , 56\}\)

\(\{10 , 61 , 66\}\)

68

\(\{6 , 57 , 62\}\)

\(\{22 , 30 ,48\}\)

52

\(\{2 , 10, 28\}\)

\(\{12 , 17 , 54\}\)

22

\(\{34 , 39 , 4\}\)

\(\{32 , 42 , 57\}\)

6

\(\{38 , 48, 63\}\)

\(\{13, 27, 33\}\)

42

\(\{55 ,69 , 3\}\)

\(\{38 , 58 , 62\}\)

54

\(\{20, 40 , 44\}\)

\(\{15 , 44, 46\}\)

58

\(\{1 , 30 , 32\}\)

\(\{51 ,60, \infty _1\}\)

28

\(\{7 , 16, \infty _1\}\)

\(\{4 , 5 ,69\}\)

18

\(\{22 ,23 ,15\}\)

\(\{52 , 55, \infty _2\}\)

38

\(\{18 , 21, \infty _2\}\)

\(\{3 ,28 , 56\}\)

14

\(\{17, 42 ,70\}\)

\(\{64 , 71, \infty _3\}\)

62

\(\{54 , 61, \infty _3\}\)

\(\{19 , 31 , 53\}\)

46

\(\{65 , 5 , 27\}\)

\(\{67 ,70, \infty _4\}\)

16

\(\{11 , 14, \infty _4\}\)

\(\{6 , 20 , 59\}\)

60

\(\{66 , 8 ,47\}\)

   

13

\(\{4 ,17 ,55 , 56\}\)

0

\(\{4 , 17 ,55 , 56\}\)

\(\{15 , 47, 70\}\)

56

\(\{71 , 25 , 48\}\)

\(\{5 , 8 , 49\}\)

36

\(\{41, 44 , 7\}\)

\(\{19 , 45 , 60\}\)

48

\(\{67 , 15 ,30\}\)

\(\{3 ,65 , 75\}\)

72

\(\{75 , 59 ,69\}\)

\(\{25 , 54 , 58\}\)

8

\(\{33 ,62 , 66\}\)

\(\{28, 34 , 43\}\)

66

\(\{16 , 22 , 31\}\)

\(\{30 , 35 , 59\}\)

46

\(\{76 , 3 , 27\}\)

\(\{26, 27 , 57\}\)

20

\(\{46, 47, 77\}\)

\(\{12 , 50 ,71\}\)

30

\(\{42 , 2 , 23\}\)

\(\{23 , 37 , 44\}\)

60

\(\{5 , 19 , 26\}\)

\(\{16 , 36, 46\}\)

42

\(\{58 , 0 , 10\}\)

\(\{21 , 41 , 72\}\)

58

\(\{1 , 21 , 52\}\)

\(\{18, 40 , 64\}\)

10

\(\{28 ,50 , 74\}\)

\(\{6 , 31 , 76\}\)

34

\(\{40, 65 , 32\}\)

\(\{22, 38 , 66\}\)

76

\(\{20 , 36 , 64\}\)

\(\{7 , 9 , 20\}\)

4

\(\{11 , 13 ,24\}\)

\(\{32 , 39 , 74\}\)

22

\(\{54 , 61 , 18\}\)

\(\{0 , 2 , 14\}\)

70

\(\{70, 72, 6\}\)

\(\{48 , 67, \infty _1\}\)

64

\(\{34 , 53, \infty _1\}\)

\(\{1 ,10 , 13\}\)

50

\(\{51 , 60 , 63\}\)

\(\{52, 69, \infty _2\}\)

38

\(\{12 , 29, \infty _2\}\)

\(\{29 , 33 , 51\}\)

6

\(\{35 , 39 ,57\}\)

\(\{62 , 73, \infty _3\}\)

54

\(\{38 , 49, \infty _3\}\)

\(\{24 , 42 , 77\}\)

44

\(\{68 , 8 , 43\}\)

\(\{63 , 68, \infty _4\}\)

24

\(\{9 , 14, \infty _4\}\)

\(\{11 , 53 ,61\}\)

62

\(\{73 , 37, 45\}\)

   

14

\(\{4 , 17, 67 ,68\}\)

0

\(\{4 , 17, 67 ,68\}\)

\(\{28 , 32, 35\}\)

2

\(\{30, 34 , 37\}\)

\(\{9 ,57 ,72\}\)

74

\(\{83 , 47 , 62\}\)

\(\{25 , 37 ,55\}\)

18

\(\{43 , 55 ,73\}\)

\(\{34 , 40, 50\}\)

56

\(\{6 ,12 , 22\}\)

\(\{3, 20 , 58\}\)

6

\(\{9 , 26 ,64\}\)

\(\{16 , 53, 59\}\)

32

\(\{48 , 1 , 7\}\)

\(\{13 , 29 , 82\}\)

22

\(\{35, 51 , 20\}\)

\(\{5, 33 ,43\}\)

54

\(\{59 , 3 , 13\}\)

\(\{6 , 11 , 24\}\)

4

\(\{10 , 15 ,28\}\)

\(\{12, 42 , 51\}\)

44

\(\{56 , 2, 11\}\)

\(\{10 , 61 , 75\}\)

14

\(\{24 ,75 , 5\}\)

\(\{26, 54 , 66\}\)

16

\(\{42 , 70, 82\}\)

\(\{22 , 77 , 79\}\)

36

\(\{58 , 29, 31\}\)

\(\{1 , 23 , 81\}\)

26

\(\{27 , 49 , 23\}\)

\(\{15 , 39, 64\}\)

66

\(\{81 ,21 , 46\}\)

\(\{7 , 14 , 74\}\)

70

\(\{77 , 0 , 60\}\)

\(\{38 ,60 , 83\}\)

62

\(\{16 , 38 , 61\}\)

\(\{8 , 49 , 69\}\)

68

\(\{76 , 33 , 53\}\)

\(\{41 , 44 , 46\}\)

28

\(\{69 , 72, 74\}\)

\(\{19, 27, 71\}\)

52

\(\{71 , 79 ,39\}\)

\(\{45 , 80, \infty _1\}\)

12

\(\{57 , 8, \infty _1\}\)

\(\{18 , 65, 76\}\)

60

\(\{78 , 41 , 52\}\)

\(\{47, 56, \infty _2\}\)

82

\(\{45 , 54, \infty _2\}\)

\(\{2 , 21, 78\}\)

42

\(\{44 , 63 , 36\}\)

\(\{48 , 73, \infty _3\}\)

76

\(\{40 , 65, \infty _3\}\)

\(\{0 , 36 , 70\}\)

80

\(\{80 , 32 , 66\}\)

\(\{52 , 63, \infty _4\}\)

46

\(\{14 , 25, \infty _4\}\)

\(\{30 , 31 , 62\}\)

72

\(\{18 , 19 ,50\}\)

   

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, S. Doubly Resolvable Canonical Kirkman Packing Designs and its Applications. Graphs and Combinatorics 35, 1239–1251 (2019). https://doi.org/10.1007/s00373-019-02072-9

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00373-019-02072-9

Keywords

Mathematics Subject Classification

Navigation