Skip to main content
Log in

Neighbor Sum Distinguishing Total Choosability of Cubic Graphs

  • Original Paper
  • Published:
Graphs and Combinatorics Aims and scope Submit manuscript

Abstract

Let \(G=(V, E)\) be a graph and \({\mathbb {R}}\) be the set of real numbers. For a k-list total assignment L of G that assigns to each member \(z\in V\cup E\) a set \(L_{z}\) of k real numbers, a neighbor sum distinguishing (NSD) total L-coloring of G is a mapping \(\phi :V\cup E \rightarrow {\mathbb {R}}\) such that every member \(z\in V\cup E\) receives a color of \(L_z\), every pair of adjacent or incident members in \(V\cup E\) receive different colors, and \(\sum _{z\in E_{G}(u)\cup \{u\}}\phi (z)\ne \sum _{z\in E_{G}(v)\cup \{v\}}\phi (z)\) for each edge \(uv\in E\), where \(E_{G}(v)\) is the set of edges incident with v in G. In 2015, Pilśniak and Woźniak posed the conjecture that every graph G with maximum degree \(\Delta \) has an NSD total L-coloring with \(L_z=\{1,2,\dots , \Delta +3\}\) for any \(z\in V\cup E\), and confirmed the conjecture for all cubic graphs. In this paper, we extend their result by proving that every cubic graph has an NSD total L-coloring for any 6-list total assignment L.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Alon, N.: Combinatorial nullstellensatz. Combin. Probab. Comput. 8, 7–29 (1999)

    Article  MathSciNet  Google Scholar 

  2. Bondy, J.A., Murty, U.S.R.: Graph theory. In: GTM, vol. 244. Springer, Berlin (2008)

  3. Ding, L., Wang, G., Wu, J., Yu, J.: Neighbor sum (set) distinguishing total choosability via the Combinatorial Nullstellensatz. Graphs Combin. 33, 885–900 (2017)

    Article  MathSciNet  Google Scholar 

  4. Han, M., Lu, Y., Luo, R., Miao, Z.: Neighbor sum distinguishing total coloring of graphs with bounded treewidth. J. Combin. Optim. 36, 23–34 (2018)

    Article  MathSciNet  Google Scholar 

  5. Li, H., Liu, B., Wang, G.: Neighbor sum distinguishing total coloring of \(K_{4}\)-minor-free graphs. Front. Math. China 8, 1351–1366 (2013)

    Article  MathSciNet  Google Scholar 

  6. Lu, Y., Xu, C., Miao, Z.: Neighbor sum distinguishing list total coloring of subcubic graphs. J. Combin. Optim. 35, 778–793 (2018)

    Article  MathSciNet  Google Scholar 

  7. Pilśniak, M., Woźniak, M.: On the total-neighbor-distinguishing index by sums. Graphs Combin. 31, 771–782 (2015)

    Article  MathSciNet  Google Scholar 

  8. Qu, C., Ding, L., Wang, G., Yan, G.: Neighbor distinguishing total choice number of sparse graphs via the Combinatorial Nullstellensatz. Acta Math. Sin. (Engl. Ser.) 32, 537–548 (2016)

    Article  MathSciNet  Google Scholar 

  9. Qu, C., Wang, G., Yan, G., Yu, X.: Neighbor sum distinguishing total choosability of planar graphs. J. Combin. Optim. 32, 906–916 (2016)

    Article  MathSciNet  Google Scholar 

  10. Song, W., Miao, L., Li, J., Zhao, Y., Pang, J.: Neighbor sum distinguishing total coloring of sparse IC-planar graphs. Discrete Appl. Math. 239, 183–192 (2018)

    Article  MathSciNet  Google Scholar 

  11. Wang, J., Cai, J., Ma, Q.: Neighbor sum distinguishing total choosability of planar graphs without 4-cycles. Discrete Appl. Math. 206, 215–219 (2016)

    Article  MathSciNet  Google Scholar 

  12. Wang, J., Cai, J., Qiu, B.: Neighbor sum distinguishing total choosability of planar graphs without adjacent triangles. Theor. Comput. Sci. 661, 1–7 (2017)

    Article  MathSciNet  Google Scholar 

  13. Xu, C., Ge, S., Li, J.: Neighbor sum distinguishing total chromatic number of 2-degenerate graphs. Discrete Appl. Math. 251, 349–352 (2018)

    Article  MathSciNet  Google Scholar 

  14. Xu, C., Li, J., Ge, S.: Neighbor sum distinguishing total chromatic number of planar graphs. Appl. Math. Comput. 332, 189–196 (2018)

    MathSciNet  MATH  Google Scholar 

  15. Yang, D., Sun, L., Yu, X., Wu, J., Zhou, S.: Neighbor sum distinguishing total chromatic number of planar graphs with maximum degree 10. Appl. Math. Comput. 314, 456–468 (2017)

    MathSciNet  MATH  Google Scholar 

  16. Yao, J., Yu, X., Wang, G., Xu, C.: Neighbor sum (set) distinguishing total choosability of \(d\)-degenerate graphs. Graphs Comb. 32, 1611–1620 (2016)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to You Lu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

You Lu’s work was partially supported by the National Natural Science Foundation of China (NO. 11871397) and the Natural Science Basic Research Plan in Shaanxi Province of China (NO. 2020JM-083). Shenggui Zhang’s work was partially supported by the National Natural Science Foundation of China (NO. 11671320 and U1803263) and the Fundamental Research Funds for the Central Universities (NO. 3102019ghjd003).

Appendix

Appendix

\(\%\%\) The NoteBook of Mathematica to compute the coefficients.

\(\%\) INPUT

\(\%\) Lemma 3.1

$$\begin{aligned}&\hbox {P}=(\hbox {x}_1-\hbox {y}_1)(\hbox {x}_1-\hbox {y}_2)(\hbox {x}_1-\hbox {y}_3)(\hbox {y}_1-\hbox {y}_2)(\hbox {y}_1-\hbox {y}_3)(\hbox {y}_2-\hbox {y}_3)(x_1-x_2)\\&\quad (x_1+y_2+y_3-x_2-y_4-y_5)(x_1-x_3) (\hbox {x}_1+\hbox {y}_1+\hbox {y}_3-\hbox {x}_3-\hbox {y}_4-\hbox {y}_6)\\&\quad (\hbox {x}_1-\hbox {x}_4)(\hbox {x}_1+\hbox {y}_1+\hbox {y}_2-\hbox {x}_4-\hbox {y}_5-\hbox {y}_6)\\&\quad (\hbox {x}_2-\hbox {y}_1)(\hbox {x}_2-\hbox {y}_4)(\hbox {x}_2-\hbox {y}_5)(\hbox {y}_1-\hbox {y}_4) (\hbox {y}_1-\hbox {y}_5)(\hbox {y}_4-\hbox {y}_5)(\hbox {x}_2-\hbox {x}_3)(\hbox {x}_2+\hbox {y}_1\\&\quad +\hbox {y}_5-\hbox {x}_3-\hbox {y}_2-\hbox {y}_6)(\hbox {x}_2-\hbox {x}_4)(\hbox {x}_2+\hbox {y}_1+\hbox {y}_4-\hbox {x}_4-\hbox {y}_3-\hbox {y}_6)(\hbox {x}_3-\hbox {y}_2)\\&\quad (\hbox {x}_3-\hbox {y}_4)(\hbox {x}_3-\hbox {y}_6)(\hbox {y}_2-\hbox {y}_4)(\hbox {y}_2-\hbox {y}_6)(\hbox {y}_4-\hbox {y}_6)(\hbox {x}_3-\hbox {x}_4)(\hbox {x}_3\\&\quad +\hbox {y}_2+\hbox {y}_4-\hbox {x}_4-\hbox {y}_3-\hbox {y}_5)(\hbox {x}_4-\hbox {y}_3) (\hbox {x}_4-\hbox {y}_5)(\hbox {x}_4-\hbox {y}_6)(\hbox {y}_3-\hbox {y}_5)(\hbox {y}_3{-}\hbox {y}_6)(\hbox {y}_5{-}\hbox {y}_6);\\ \end{aligned}$$

Cp1=Coefficient[Factor[Coefficient[Factor[Coefficient[Factor[Coefficient[P, x\(_1^4\)x\(_2^4\)]] , x\(_3^4\)x\(_4^4\)]], y\(_1^4\)y\(_2^4\)]], y\(_3^4\)y\(_4^4\)y\(_5^4\)]

\(\%\) To calculate the coefficient of x\(_1^4\)x\(_2^4\)x\(_3^4\)x\(_4^4\)y\(_1^4\)y\(_2^4\)y\(_3^4\)y\(_4^4\)y\(_5^4\)

\(\%\) Lemma 3.2 (1)

$$\begin{aligned}&\hbox {P}=(\hbox {x}_1-\hbox {y}_1)(\hbox {x}_1-\hbox {y}_4)(\hbox {x}_1-\hbox {y}_5)(\hbox {y}_1-\hbox {y}_4)(\hbox {y}_1-\hbox {y}_5)(\hbox {y}_4-\hbox {y}_5)\\&\quad (\hbox {x}_1-\hbox {x}_2)(\hbox {x}_1+\hbox {y}_4+\hbox {y}_5-\hbox {x}_2-\hbox {y}_2)(\hbox {x}_1-\hbox {x}_3)\\&\quad (\hbox {x}_1+\hbox {y}_1+\hbox {y}_4-\hbox {x}_3-\hbox {y}_2-\hbox {y}_3)\hbox {x}_2^2\hbox {y}_1\hbox {y}_2(\hbox {x}_2+\hbox {y}_1+\hbox {y}_2)(\hbox {x}_2-\hbox {y}_1)(\hbox {x}_2-\hbox {y}_2)(\hbox {y}_1-\hbox {y}_2)\\&\quad (\hbox {x}_2{-}\hbox {x}_3)(\hbox {x}_2+\hbox {y}_1{-}\hbox {x}_3-\hbox {y}_3{-}\hbox {y}_5)(\hbox {x}_3{-}\hbox {y}_2)(\hbox {x}_3{-}\hbox {y}_3)(\hbox {x}_3{-}\hbox {y}_5)(\hbox {y}_2{-}\hbox {y}_3)(\hbox {y}_2{-}\hbox {y}_5)(\hbox {y}_3{-}\hbox {y}_5)\\&\quad (\hbox {x}_3{-}\hbox {x}_4)(\hbox {x}_3{+}\hbox {y}_2{+}\hbox {y}_5{-}\hbox {x}_4{-}\hbox {y}_4)\hbox {x}_4^2\hbox {y}_3\hbox {y}_4(\hbox {x}_4+\hbox {y}_3+\hbox {y}_4)(\hbox {x}_4{-}\hbox {y}_3)(\hbox {x}_4{-}\hbox {y}_4)(\hbox {y}_3{-}\hbox {y}_4)\\&\quad (\hbox {x}_4-\hbox {x}_1)(\hbox {x}_4+ \hbox {y}_3-\hbox {x}_1-\hbox {y}_1-\hbox {y}_5); \end{aligned}$$

Cp2=Coefficient[Factor[Coefficient[Factor[Coefficient[Factor[Coefficient[P, x\(_1^4\)x\(_2^5\)]] , x\(_3^4\)x\(_4^5\)]], y\(_1^4\)y\(_2^4\)]], y\(_3^4\)y\(_4^4\)y\(_5^4\)]

\(\%\) To calculate the coefficient of x\(_1^4\)x\(_2^5\)x\(_3^4\)x\(_4^5\)y\(_1^4\)y\(_2^4\)y\(_3^4\)y\(_4^4\)y\(_5^4\)

\(\%\) Lemma 3.2 (2)

$$\begin{aligned}&\hbox {P}=(\hbox {x}_1-\hbox {y}_1)(\hbox {x}_1-\hbox {y}_4)(\hbox {x}_1-\hbox {y}_5)(\hbox {y}_1-\hbox {y}_4)(\hbox {y}_1-\hbox {y}_5)(\hbox {y}_4-\hbox {y}_5)(\hbox {x}_1-\hbox {x}_2)\\&\quad (\hbox {x}_1+\hbox {y}_4+\hbox {y}_5-\hbox {x}_2-\hbox {y}_2)\hbox {x}_2^2\hbox {y}_1\hbox {y}_2(\hbox {x}_2+\hbox {y}_1+\hbox {y}_2)(\hbox {x}_2-\hbox {y}_1)(\hbox {x}_2-\hbox {y}_2)(\hbox {y}_1-\hbox {y}_2)\\&\quad (\hbox {x}_2-\hbox {x}_3)(\hbox {x}_2+\hbox {y}_1-\hbox {x}_3-\hbox {y}_3-\hbox {y}_6)(\hbox {x}_3-\hbox {y}_2)(\hbox {x}_3-\hbox {y}_3)(\hbox {x}_3-\hbox {y}_6)(\hbox {y}_2-\hbox {y}_3)\\&\quad (\hbox {y}_2-\hbox {y}_6)(\hbox {y}_3-\hbox {y}_6)(\hbox {x}_3-\hbox {x}_4)(\hbox {x}_3+\hbox {y}_2+\hbox {y}_6-\hbox {x}_4-\hbox {y}_4)\hbox {x}_4^2\hbox {y}_3 \hbox {y}_4\\&\quad (\hbox {x}_4+\hbox {y}_3+\hbox {y}_4)(\hbox {x}_4-\hbox {y}_3)(\hbox {x}_4-\hbox {y}_4)(\hbox {y}_3-\hbox {y}_4)\\&\quad (\hbox {x}_4-\hbox {x}_1)(\hbox {x}_4+\hbox {y}_3-\hbox {x}_1-\hbox {y}_1-\hbox {y}_5)\hbox {x}_5^2\hbox {y}_5 \hbox {y}_6(\hbox {x}_5+\hbox {y}_5\\&\quad +\hbox {y}_6)(\hbox {x}_5-\hbox {y}_5)(\hbox {x}_5-\hbox {y}_6)(\hbox {y}_5-\hbox {y}_6)(\hbox {x}_5-\hbox {x}_1)(\hbox {x}_5+\hbox {y}_6-\hbox {x}_1-\hbox {y}_1-\hbox {y}_4)\\&\quad (\hbox {x}_5-\hbox {x}_3) (\hbox {x}_5+\hbox {y}_5-\hbox {x}_3-\hbox {y}_2-\hbox {y}_3); \end{aligned}$$

Cp3=Coefficient[Factor[Coefficient[Factor[Coefficient[Factor[Coefficient[Factor [Coefficient[P, x\(_1^4\)x\(_2^5\)]] , x\(_3^5\)x\(_4^5\)]], x\(_5^5\)y\(_1^4\)]], y\(_2^4\)y\(_3^4\)]], y\(_4^4\)y\(_5^3\)y\(_6^5\)]

\(\%\) To calculate the coefficient of x\(_1^4\)x\(_2^5\)x\(_3^5\)x\(_4^5\)x\(_5^5\)y\(_1^4\)y\(_2^4\)y\(_3^4\)y\(_4^4\)y\(_5^3\)y\(_6^5\)

\(\%\) Lemma 3.2 (3) n=3

$$\begin{aligned}&\hbox {P}=\hbox {x}_4^4\hbox {y}_4^2(\hbox {x}_4+\hbox {y}_4)^2(\hbox {x}_4-\hbox {y}_4)\\&\quad (\hbox {x}_4-\hbox {x}_1)(\hbox {x}_4-\hbox {x}_1-\hbox {y}_1-\hbox {y}_3)\\&\quad (\hbox {x}_1-\hbox {y}_1)(\hbox {x}_1-\hbox {y}_3)(\hbox {x}_1-\hbox {y}_4)(\hbox {y}_1-\hbox {y}_3)\\&\quad (\hbox {y}_1-\hbox {y}_4)(\hbox {y}_3-\hbox {y}_4)(\hbox {x}_1-\hbox {x}_2)\\&\quad (\hbox {x}_1+\hbox {y}_3 +\hbox {y}_4-\hbox {x}_2-\hbox {y}_2)\\&\quad \hbox {x}_2^2\hbox {y}_1\hbox {y}_2(\hbox {x}_2+\hbox {y}_1+\hbox {y}_2)\\&\quad (\hbox {x}_2-\hbox {y}_1)(\hbox {x}_2-\hbox {y}_2)(\hbox {y}_1-\hbox {y}_2)\\&\quad (\hbox {x}_2-\hbox {x}_3)(\hbox {x}_2+\hbox {y}_1-\hbox {x}_3-\hbox {y}_3)\\&\quad \hbox {x}_3^2\hbox {y}_2\hbox {y}_3(\hbox {x}_3+\hbox {y}_2\\&\quad +\hbox {y}_3)(\hbox {x}_3-\hbox {y}_2)(\hbox {x}_3-\hbox {y}_3)(\hbox {y}_2-\hbox {y}_3)\\&\quad (\hbox {x}_3-\hbox {x}_1)(\hbox {x}_3+\hbox {y}_2-\hbox {x}_1-\hbox {y}_1-\hbox {y}_4); \end{aligned}$$

Cp4=Coefficient[Factor[Coefficient[Factor[Coefficient[Factor[Coefficient[P, x\(_1^5\)y\(_1^5\)]], x\(_2^5\)y\(_2^5\)]], x\(_3^5\)y\(_3^4\)]], x\(_4^5\)y\(_4^5\)]

\(\%\) To calculate the coefficient of x\(_1^5\)y\(_1^5\)x\(_2^5\)y\(_2^5\)x\(_3^5\)y\(_3^4\)x\(_4^5\)y\(_4^5\)

\(\%\) Lemma 3.2 (3) n=4

$$\begin{aligned}&\hbox {P}=\hbox {x}_5^4\hbox {y}_5^2(\hbox {x}_5+\hbox {y}_5)^2(\hbox {x}_5-\hbox {y}_5)(\hbox {x}_5-\hbox {x}_1)(\hbox {x}_5-\hbox {x}_1-\hbox {y}_1-\hbox {y}_4)\\&\quad (\hbox {x}_1-\hbox {y}_1)(\hbox {x}_1-\hbox {y}_4)(\hbox {x}_1-\hbox {y}_5)(\hbox {y}_1-\hbox {y}_4)\\&\quad (\hbox {y}_1-\hbox {y}_5)(\hbox {y}_4-\hbox {y}_5)(\hbox {x}_1-\hbox {x}_2)\\&\quad (\hbox {x}_1+\hbox {y}_4+ \hbox {y}_5-\hbox {x}_2-\hbox {y}_2)\hbox {x}_2^2\hbox {y}_1\hbox {y}_2\\&\quad (\hbox {x}_2+\hbox {y}_1+\hbox {y}_2)(\hbox {x}_2-\hbox {y}_1)(\hbox {x}_2-\hbox {y}_2)\\&\quad (\hbox {y}_1-\hbox {y}_2)(\hbox {x}_2-\hbox {x}_3)(\hbox {x}_2+\hbox {y}_1-\hbox {x}_3-\hbox {y}_3)\\&\quad \hbox {x}_3^2\hbox {y}_2\hbox {y}_3(\hbox {x}_3+\hbox {y}_2\\&\quad +\hbox {y}_3)(\hbox {x}_3-\hbox {y}_2)\\&\quad (\hbox {x}_3-\hbox {y}_3)(\hbox {y}_2-\hbox {y}_3) (\hbox {x}_3-\hbox {x}_4)\\&\quad (\hbox {x}_3+\hbox {y}_2-\hbox {x}_4-\hbox {y}_4)\hbox {x}_4^2\hbox {y}_3\hbox {y}_4(\hbox {x}_4+\hbox {y}_3+\hbox {y}_4)\\&\quad (\hbox {x}_4-\hbox {y}_3)(\hbox {x}_4-\hbox {y}_4)(\hbox {y}_3-\hbox {y}_4)(\hbox {x}_4-\hbox {x}_1)\\&\quad (\hbox {x}_4+\hbox {y}_3-\hbox {x}_1-\hbox {y}_1-\hbox {y}_5); \end{aligned}$$

Cp5=Coefficient[Factor[Coefficient[Factor[Coefficient[Factor[Coefficient[Factor [Coefficient[P, x\(_1^5\)y\(_1^5\)]] , x\(_2^5\)y\(_2^5\)]], x\(_3^5\)y\(_3^5\)]], x\(_4^5\)y\(_4^4\)]], x\(_5^5\)y\(_5^5\)]

\(\%\) To calculate the coefficient of x\(_1^5\)y\(_1^5\)x\(_2^5\)y\(_2^5\)x\(_3^5\)y\(_3^5\)x\(_4^5\)y\(_4^4\)x\(_5^5\)y\(_5^5\)

\(\%\) Lemma 3.2 (3) n=5

$$\begin{aligned}&\hbox {P}=\hbox {x}_6^4\hbox {y}_6^2(\hbox {x}_6+\hbox {y}_6)^2(\hbox {x}_6-\hbox {y}_6)(\hbox {x}_6-\hbox {x}_1)(\hbox {x}_6-\hbox {x}_1-\hbox {y}_1-\hbox {y}_5)\\&\quad (\hbox {x}_1-\hbox {y}_1)(\hbox {x}_1-\hbox {y}_5)(\hbox {x}_1-\hbox {y}_6)(\hbox {y}_1-\hbox {y}_5)\\&\quad (\hbox {y}_1-\hbox {y}_6)(\hbox {y}_5-\hbox {y}_6)(\hbox {x}_1-\hbox {x}_2)\\&\quad (\hbox {x}_1+\hbox {y}_5\\&\quad +\hbox {y}_6-\hbox {x}_2-\hbox {y}_2)\hbox {x}_2^2\hbox {y}_1\hbox {y}_2(\hbox {x}_2+\hbox {y}_1+\hbox {y}_2)(\hbox {x}_2-\hbox {y}_1)(\hbox {x}_2-\hbox {y}_2)\\&\quad (\hbox {y}_1-\hbox {y}_2)(\hbox {x}_2-\hbox {x}_3)(\hbox {x}_2+\hbox {y}_1-\hbox {x}_3-\hbox {y}_3)\hbox {x}_3^2\hbox {y}_2\hbox {y}_3(\hbox {x}_3+\hbox {y}_2\\&\quad +\hbox {y}_3)(\hbox {x}_3-\hbox {y}_2)(\hbox {x}_3-\hbox {y}_3)(\hbox {y}_2-\hbox {y}_3)\\&\quad (\hbox {x}_3-\hbox {x}_4)(\hbox {x}_3+\hbox {y}_2-\hbox {x}_4-\hbox {y}_4)\hbox {x}_4^2\hbox {y}_3\hbox {y}_4\\&\quad (\hbox {x}_4+\hbox {y}_3+\hbox {y}_4)(\hbox {x}_4-\hbox {y}_3)(\hbox {x}_4-\hbox {y}_4)(\hbox {y}_3-\hbox {y}_4)\\&\quad (\hbox {x}_4-\hbox {x}_5)(\hbox {x}_4+\hbox {y}_3-\hbox {x}_5-\hbox {y}_5)\hbox {x}_5^2\hbox {y}_4\hbox {y}_5(\hbox {x}_5+\hbox {y}_4+\hbox {y}_5)\\&\quad (\hbox {x}_5-\hbox {y}_4)(\hbox {x}_5-\hbox {y}_5)(\hbox {y}_4-\hbox {y}_5)(\hbox {x}_5-\hbox {x}_1)\\&\quad (\hbox {x}_5+\hbox {y}_4-\hbox {x}_1-\hbox {y}_1-\hbox {y}_6); \end{aligned}$$

Cp6=Coefficient[Factor[Coefficient[Factor[Coefficient[Factor[Coefficient[Factor [Coefficient

[Factor[Coefficient[P, x\(_1^5\)y\(_1^5\)]], x\(_2^5\)y\(_2^5\)]], x\(_3^5\)y\(_3^5\)]], x\(_4^5\)y\(_4^5\)]], x\(_5^5\)y\(_5^4\)]], x\(_6^5\)y\(_6^5\)]

\(\%\) To calculate the coefficient of x\(_1^5\)y\(_1^5\)x\(_2^5\)y\(_2^5\)x\(_3^5\)y\(_3^5\)x\(_4^5\)y\(_4^5\)x\(_5^5\)y\(_5^4\)x\(_6^5\)y\(_6^5\)

\(\%\) Lemma 3.2 (3) n=6

$$\begin{aligned}&\hbox {P}=\hbox {x}_7^4\hbox {y}_7^2(\hbox {x}_7+\hbox {y}_7)^2(\hbox {x}_7-\hbox {y}_7)(\hbox {x}_7-\hbox {x}_1)(\hbox {x}_7-\hbox {x}_1-\hbox {y}_1-\hbox {y}_6)\\&\quad (\hbox {x}_1-\hbox {y}_1)(\hbox {x}_1-\hbox {y}_6)(\hbox {x}_1-\hbox {y}_7)(\hbox {y}_1-\hbox {y}_6)\\&\quad (\hbox {y}_1-\hbox {y}_7)(\hbox {y}_6-\hbox {y}_7)(\hbox {x}_1-\hbox {x}_2)\\&\quad (\hbox {x}_1+\hbox {y}_6+\hbox {y}_7-\hbox {x}_2-\hbox {y}_2)\\&\quad \hbox {x}_2^2\hbox {y}_1\hbox {y}_2(\hbox {x}_2+\hbox {y}_1+\hbox {y}_2)\\&\quad (\hbox {x}_2-\hbox {y}_1)(\hbox {x}_2-\hbox {y}_2)\\&\quad (\hbox {y}_1-\hbox {y}_2)(\hbox {x}_2-\hbox {x}_3)(\hbox {x}_2+\hbox {y}_1-\hbox {x}_3-\hbox {y}_3)\\&\quad \hbox {x}_3^2\hbox {y}_2\hbox {y}_3(\hbox {x}_3+\hbox {y}_2\\&\quad +\hbox {y}_3)(\hbox {x}_3-\hbox {y}_2)(\hbox {x}_3-\hbox {y}_3)(\hbox {y}_2-\hbox {y}_3)\\&\quad (\hbox {x}_3-\hbox {x}_4)(\hbox {x}_3+\hbox {y}_2-\hbox {x}_4-\hbox {y}_4)\\&\quad \hbox {x}_4^2\hbox {y}_3\hbox {y}_4(\hbox {x}_4+\hbox {y}_3+\hbox {y}_4)(\hbox {x}_4-\hbox {y}_3)\\&\quad (\hbox {x}_4-\hbox {y}_4)(\hbox {y}_3-\hbox {y}_4)(\hbox {x}_4-\hbox {x}_5)\\&\quad (\hbox {x}_4+\hbox {y}_3-\hbox {x}_5-\hbox {y}_5)\hbox {x}_5^2\hbox {y}_4\hbox {y}_5\\&\quad (\hbox {x}_5+\hbox {y}_4+\hbox {y}_5)(\hbox {x}_5-\hbox {y}_4)(\hbox {x}_5-\hbox {y}_5)\\&\quad (\hbox {y}_4-\hbox {y}_5)(\hbox {x}_5-\hbox {x}_6)(\hbox {x}_5+\hbox {y}_4-\hbox {x}_6-\hbox {y}_6)\\&\quad \hbox {x}_6^2\hbox {y}_5\hbox {y}_6(\hbox {x}_6+\hbox {y}_5\\&\quad +\hbox {y}_6)(\hbox {x}_6-\hbox {y}_5)(\hbox {x}_6-\hbox {y}_6)\\&\quad (\hbox {y}_5-\hbox {y}_6)(\hbox {x}_6-\hbox {x}_1)(\hbox {x}_6+\hbox {y}_5-\hbox {x}_1-\hbox {y}_1-\hbox {y}_7); \end{aligned}$$

Cp7=Coefficient[Factor[Coefficient[Factor[Coefficient[Factor[Coefficient[Factor [Coefficient

[Factor[Coefficient[Factor[Coefficient[P, x\(_1^5\)y\(_1^5\)]], x\(_2^5\)y\(_2^5\)]], x\(_3^5\)y\(_3^5\)]], x\(_4^5\)y\(_4^5\)]], x\(_5^5\)y\(_5^5\)]], x\(_6^5\)y\(_6^4\)]], x\(_7^5\)y\(_7^5\)]

\(\%\) To calculate the coefficient of x\(_1^5\)y\(_1^5\)x\(_2^5\)y\(_2^5\)x\(_3^5\)y\(_3^5\)x\(_4^5\)y\(_4^5\)x\(_5^5\)y\(_5^5\)x\(_6^5\)y\(_6^4\)x\(_7^5\)y\(_7^5\)

\(\%\) Lemma 3.2 (4) \(\eta _{J_{0}}\)

$$\begin{aligned}&\hbox {P}=(\hbox {x}_{\mathrm{n}}-\hbox {x}_{1})(\hbox {x}_{\mathrm{n}}+\hbox {y}_{\mathrm{n-1}}+\hbox {y}_{\mathrm{2n}}-\hbox {x}_{1}-\hbox {y}_{1}-\hbox {y}_{n+1})\\&\quad (\hbox {x}_{1}-\hbox {y}_{1})(\hbox {x}_{1}-\hbox {y}_{\mathrm{n}})(\hbox {x}_{1}-\hbox {y}_{n+1})(\hbox {y}_{1}-\hbox {y}_{\mathrm{n}})\\&\quad (\hbox {y}_{1}-\hbox {y}_{\mathrm{n+1}})(\hbox {y}_{\mathrm{n}}-\hbox {y}_{\mathrm{n+1}})\\&\quad (\hbox {x}_{1}-\hbox {x}_{2})(\hbox {x}_{1}+\hbox {y}_{\mathrm{n}}+\hbox {y}_{\mathrm{n+1}}-\hbox {x}_{2}-\hbox {y}_{2}-\hbox {y}_{\mathrm{n+2}})\\&\quad \hbox {x}_{\mathrm{n+1}}^{4}\hbox {y}_{\mathrm{n+1}}^{2}(\hbox {x}_{\mathrm{n+1}}+\hbox {y}_{\mathrm{n+1}})^{2}(\hbox {x}_{\mathrm{n+1}}-\hbox {y}_{\mathrm{n+1}})\\&\quad (\hbox {x}_{\mathrm{n+1}}-\hbox {x}_{1})(\hbox {x}_{\mathrm{n+1}}-\hbox {x}_{1}-\hbox {y}_{1}-\hbox {y}_{n}) (\hbox {x}_{2}\\&\quad -\hbox {y}_{1})(\hbox {x}_{2}-\hbox {y}_{2})(\hbox {x}_{2}-\hbox {y}_{\mathrm{{n+2}}})\\&\quad (\hbox {y}_{1}-\hbox {y}_{2})(\hbox {y}_{1}-\hbox {y}_{\mathrm{{n+2}}})(\hbox {y}_{2}-\hbox {y}_{\mathrm{{n+2}}})\\&\quad (\hbox {x}_{2}-\hbox {x}_{3})(\hbox {x}_{2}+\hbox {y}_{1}+\hbox {y}_{\mathrm{{n+2}}}-\hbox {x}_{3}-\hbox {y}_{3}-\hbox {y}_{\mathrm{{n+3}}})\hbox {x}_{\mathrm{{n+2}}}^{4}\\&\quad \hbox {y}_{\mathrm{{n+2}}}^{2}(\hbox {x}_{\mathrm{{n+2}}} +\hbox {y}_{\mathrm{{n+2}}})^{2}(\hbox {x}_{\mathrm{{n+2}}}-\hbox {y}_{\mathrm{{n+2}}})\\&\quad (\hbox {x}_{\mathrm{{n+2}}}-\hbox {x}_{2})(\hbox {x}_{\mathrm{{n+2}}}-\hbox {x}_{2}-\hbox {y}_{1}-\hbox {y}_{2})\\&\quad (\hbox {x}_{3}-\hbox {y}_{2})(\hbox {x}_{3}-\hbox {y}_{3})\\&\quad (\hbox {x}_{3}-\hbox {y}_{\mathrm{{n+3}}})(\hbox {y}_{2}-\hbox {y}_{3})\\&\quad (\hbox {y}_{2}-\hbox {y}_{\mathrm{{n+3}}})(\hbox {y}_{3}-\hbox {y}_{\mathrm{{n+3}}})\\&\quad (\hbox {x}_{3}-\hbox {x}_{4})(\hbox {x}_{3}+\hbox {y}_{2}+\hbox {y}_{\mathrm{{n+3}}}\\&\quad -\hbox {x}_{4}-\hbox {y}_{4}-\hbox {y}_{\mathrm{{n+4}}})\hbox {x}_{\mathrm{{n+3}}}^{4}\\&\quad \hbox {y}_{\mathrm{{n+3}}}^{2}(\hbox {x}_{\mathrm{{n+3}}}+\hbox {y}_{\mathrm{{n+3}}})^{2}\\&\quad (\hbox {x}_{\mathrm{{n+3}}}-\hbox {y}_{\mathrm{{n+3}}})\\&\quad (\hbox {x}_{\mathrm{{n+3}}}-\hbox {x}_{3})\\&\quad (\hbox {x}_{\mathrm{{n+3}}}-\hbox {x}_{3}-\hbox {y}_{2}-\hbox {y}_{3})\\&\quad (\hbox {x}_{4}-\hbox {y}_{3})(\hbox {x}_{4}-\hbox {y}_{4})\\&\quad (\hbox {x}_{4}-\hbox {y}_{\mathrm{{n+4}}})(\hbox {y}_{3}-\hbox {y}_{4})\\&\quad (\hbox {y}_{3}-\hbox {y}_{\mathrm{{n+4}}})(\hbox {y}_{4}-\hbox {y}_{\mathrm{{n+4}}})\\&\quad (\hbox {x}_{4}-\hbox {x}_{5})\\&\quad (\hbox {x}_{4}+\hbox {y}_{3}+\hbox {y}_{\mathrm{{n+4}}}-\hbox {x}_{5}-\hbox {y}_{5}-\hbox {y}_{\mathrm{{n+5}}})\\&\quad \hbox {x}_{\mathrm{{n+4}}}^{4}\hbox {y}_{\mathrm{{n+4}}}^{2}(\hbox {x}_{\mathrm{{n+4}}}\\&\quad +\hbox {y}_{\mathrm{{n+4}}})^{2}(\hbox {x}_{\mathrm{{n+4}}}-\hbox {y}_{\mathrm{{n+4}}})\\&\quad (\hbox {x}_{\mathrm{{n+4}}}-\hbox {x}_{4})(\hbox {x}_{\mathrm{{n+4}}}-\hbox {x}_{4}-\hbox {y}_{3}-\hbox {y}_{4})\\&\quad (\hbox {x}_{5}-\hbox {y}_{4})(\hbox {x}_{5}-\hbox {y}_{5})\\&\quad (\hbox {x}_{5}-\hbox {y}_{\mathrm{{n+5}}})(\hbox {y}_{4}-\hbox {y}_{5})\\&\quad (\hbox {y}_{4}-\hbox {y}_{\mathrm{{n+5}}})(\hbox {y}_{5}-\hbox {y}_{\mathrm{{n+5}}})\\&\quad (\hbox {x}_{5}-\hbox {x}_{6})(\hbox {x}_{5}+\hbox {y}_{4}+\hbox {y}_{\mathrm{{n+5}}}\\&\quad -\hbox {x}_{6}-\hbox {y}_{6}-\hbox {y}_{\mathrm{{n+6}}})\hbox {x}_{\mathrm{{n+5}}}^{4}\hbox {y}_{\mathrm{{n+5}}}^{2}\\&\quad (\hbox {x}_{\mathrm{{n+5}}}+\hbox {y}_{\mathrm{{n+5}}})^{2}(\hbox {x}_{\mathrm{{n+5}}}-\hbox {y}_{\mathrm{{n+5}}})\\&\quad (\hbox {x}_{\mathrm{{n+5}}}-\hbox {x}_{5})\\&\quad (\hbox {x}_{\mathrm{{n+5}}}-\hbox {x}_{5}-\hbox {y}_{4}-\hbox {y}_{5})\\&\quad (\hbox {x}_{6}-\hbox {y}_{5})(\hbox {x}_{6}-\hbox {y}_{6})\\&\quad (\hbox {x}_{6}-\hbox {y}_{\mathrm{{n+6}}})(\hbox {y}_{5}-\hbox {y}_{6})\\&\quad (\hbox {y}_{5}-\hbox {y}_{\mathrm{{n+6}}})(\hbox {y}_{6}-\hbox {y}_{\mathrm{{n+6}}})\\&\quad (\hbox {x}_{6}-\hbox {x}_{7})(\hbox {x}_{6}+\hbox {y}_{5}+\hbox {y}_{\mathrm{{n+6}}}\\&\quad -\hbox {x}_{7}-\hbox {y}_{7}-\hbox {y}_{n+7})\hbox {x}_{\mathrm{{n+6}}}^{4}\hbox {y}_{\mathrm{{n+6}}}^{2}\\&\quad (\hbox {x}_{\mathrm{{n+6}}}+\hbox {y}_{\mathrm{{n+6}}})^{2}(\hbox {x}_{\mathrm{{n+6}}}-\hbox {y}_{\mathrm{{n+6}}})\\&\quad (\hbox {x}_{\mathrm{{n+6}}}-\hbox {x}_{6})(\hbox {x}_{\mathrm{{n+6}}}-\hbox {x}_{6}-\hbox {y}_{5}-\hbox {y}_{6}) \end{aligned}$$

Cp8=Coefficient[Factor[Coefficient[Factor[Coefficient[Factor[Coefficient[Factor [Coefficient

[Factor[Coefficient[Factor[Coefficient[Factor[Coefficient[Factor[Coefficient[Factor [Coefficient

[Factor[Coefficient[P, x\(_{1}^{5}\)x\(_{n+1}^{5}\)]], y\(_{1}^{5}\)y\(_{n+1}^{5}\)]], x\(_{2}^{5}\)x\(_{n+2}^{5}\)]], y\(_{2}^{5}\)y\(_{n+2}^{5}\)]], x\(_{3}^{5}\)x\(_{n+3}^{5}\)]], y\(_{3}^{5}\)y\(_{n+3}^{5}\)]], x\(_{4}^{5}\)x\(_{n+4}^{5}\)]], y\(_{4}^{5}\)y\(_{n+4}^{5}\)]], x\(_{5}^{5}\)x\(_{n+5}^{5}\)]], y\(_{5}^{4}\)y\(_{n+5}^{5}\)]], x\(_{6}^{5}\)x\(_{n+6}^{5}\)y\(_{n+6}^{5}\)]

\(\%\) To calculate the coefficient of x\(_{1}^{5}\)x\(_{n+1}^{5}\)y\(_{1}^{5}\)y\(_{n+1}^{5}\)x\(_{2}^{5}\)x\(_{n+2}^{5}\)y\(_{2}^{5}\)y\(_{n+2}^{5}\) x\(_{3}^{5}\)x\(_{n+3}^{5}\)y\(_{3}^{5}\)y\(_{n+3}^{5}\)x\(_{4}^{5}\)x\(_{n+4}^{5} \)y\(_{4}^{5}\)y\(_{n+4}^{5}\)x\(_{5}^{5}\)x\(_{n+5}^{5}\) y\(_{5}^{4}\)y\(_{n+5}^{5}\) x\(_{6}^{5}\)x\(_{n+6}^{5}\)y\(_{n+6}^{5}\)

\(\%\) Lemma 3.2 (4) \(\eta _{J_{\ell }}\)

$$\begin{aligned}&\hbox {P}=(-3\hbox {x}_{\ell }+3\hbox {y}_{\ell -1}-\hbox {y}_{\ell }-\hbox {y}_{n+\ell })(\hbox {x}_{\ell }-\hbox {y}_{\ell -1})\\&\quad (\hbox {x}_{\ell }-\hbox {y}_{\ell })(\hbox {x}_{\ell }-\hbox {y}_{n+\ell })(\hbox {y}_{\ell -1}-\hbox {y}_{\ell })\\&\quad (\hbox {y}_{\ell -1}-\hbox {y}_{n+\ell })(\hbox {y}_{\ell }-\hbox {y}_{n+\ell })\\&\quad (\hbox {x}_{\ell }-\hbox {x}_{\ell +1})(\hbox {x}_{\ell }+\hbox {y}_{\ell -1}\\&\quad +\hbox {y}_{n+\ell }-\hbox {x}_{\ell +1}-\hbox {y}_{\ell +1}-\hbox {y}_{n+\ell +1})\\&\quad \hbox {x}_{n+\ell }^{4}\hbox {y}_{n+\ell }^{2}(\hbox {x}_{n+\ell }+\hbox {y}_{n+\ell })^{2}(\hbox {x}_{n+\ell }-\hbox {y}_{n+\ell })\\&\quad (\hbox {x}_{n+\ell }-\hbox {x}_{\ell })(\hbox {x}_{n+\ell }-\hbox {x}_{\ell }-\hbox {y}_{\ell -1}-\hbox {y}_{\ell }) \end{aligned}$$

Cp9=Coefficient[Factor[Coefficient[P, x\(_{\ell }^{5}\)x\(_{n+\ell }^{5}\)]], y\(_{\ell -1}^{4}\)y\(_{n+\ell }^{5}\)]

\(\%\) To calculate the coefficient of x\(_{\ell }^{5}\)x\(_{n+\ell }^{5}\)y\(_{\ell -1}^{4}\)y\(_{n+\ell }^{5}\)

\(\%\) OUTPUT

$$\begin{aligned} Cp1= & {} -24\ \ Cp2=4\ \ Cp3=-12\ \ Cp4=2\ \ Cp5=-25\ \ Cp6=18\ \ Cp7=-65\\ Cp8= & {} -46(\hbox {y}_{n-1}+\hbox {y}_{2n})(-3\hbox {x}_7+3\hbox {y}_6-\hbox {y}_7-\hbox {y}_{n+7})\ \ Cp9=3(-3\hbox {x}_{\ell +1}+3\hbox {y}_{\ell }-\hbox {y}_{\ell +1}-\hbox {y}_{n+\ell +1}) \end{aligned}$$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, D., Lu, Y. & Zhang, S. Neighbor Sum Distinguishing Total Choosability of Cubic Graphs. Graphs and Combinatorics 36, 1545–1562 (2020). https://doi.org/10.1007/s00373-020-02196-3

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00373-020-02196-3

Keywords

Navigation