Skip to main content
Log in

Hamiltonicity in Prime Sum Graphs

  • Original Paper
  • Published:
Graphs and Combinatorics Aims and scope Submit manuscript

Abstract

For any positive integer n, we define the prime sum graph \(G_n=(V,E)\) of order n with the vertex set \(V=\{1,2,\cdots , n\}\) and \(E=\{ij: i+j \text{ is } \text{ prime }\}\). Filz in 1982 posed a conjecture that \(G_{2n}\) is Hamiltonian for any \(n\ge 2\), i.e., the set of integers \(\{1,2,\cdots , 2n\}\) can be represented as a cyclic rearrangement so that the sum of any two adjacent integers is a prime number. With a fundamental result in graph theory and a recent breakthrough on the twin prime conjecture, we prove that Filz’s conjecture is true for infinitely many cases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Notes

  1. Douglas B. West’s page (https://faculty.math.illinois.edu/\(\sim \)west/openp/primegraph.html) quickly addresses that “it is easy to build a Hamiltonian cycle when \(2n+1\) and \(2n+3\) are both prime, but it is not even known if \(G_{2n}\) is Hamiltonian for infinitely many n”.

References

  1. Bertrand, J.: Mémoire sur le nombre de valeurs que peut prendre une fonction quand on y permute les lettres qu’elle renferme. Journal de l’École Royale Polytechnique, Cahier 30 18, 123–140 (1845)

    Google Scholar 

  2. Chen, J.R.: On the representation of a larger even integer as the sum of a prime and the product of at most two primes. Sci. Sin. 16, 157–176 (1973)

    MathSciNet  MATH  Google Scholar 

  3. Chung, F.R.K., Graham, R.L., Wilson, R.M.: Quasi-random graphs. Combinatorica 9, 345–362 (1989)

    Article  MathSciNet  Google Scholar 

  4. Dirac, G.: Some theorems on abstract graphs. Proc. Lond. Math. Soc. 2, 69–81 (1952)

    Article  MathSciNet  Google Scholar 

  5. Erdős, P.: Remarks on a paper of Pósa, Magyar Tud. Akad. Mat. Kutató Int. Kőzl. 7, 227–229 (1962)

    MathSciNet  MATH  Google Scholar 

  6. Filz, A.: Problem 1046. J. Recreat. Math. 14, 64 (1982)

    Google Scholar 

  7. Frieze, A.M.: On the number of perfect matchings and Hamilton cycles in ”\(\epsilon \)-regular non-bipartite graphs, Electron. J. Comb. 7 (2000), publ. R57

  8. Frieze, A.M., Krivelevich, M.: Hamilton cycles in random subgraphs of pseudo-random graphs. Discrete Math. 256, 137–150 (2002)

    Article  MathSciNet  Google Scholar 

  9. Galvin, D.: Erdős’s proof of Bertrand’s postulate, April (2006)

  10. Greenfield, L., Greenfield, S.: Some problems of combinatorial number theory related to Bertrand’s postulate, J. Integer Seq. 1 (1998), Article 98.1.2

  11. Guy, R.K.: Unsolved Problems in Number Theory, 3rd ed. New York: Springer-Verlag, pp. 105-106, (2004)

  12. Krivelevich, M., Sudakov, B.: Sparse pseudo-random graphs are Hamiltonian. J. Graph Theory 42, 17–33 (2003)

    Article  MathSciNet  Google Scholar 

  13. Moon, J., Moser, L.: On hamiltonian bipartite graphs. Israel J. Math. 1, 163–165 (1963)

    Article  MathSciNet  Google Scholar 

  14. Maynard, J.: Small gaps between primes. Ann. Math. 181(2), 383–413 (2015)

    Article  MathSciNet  Google Scholar 

  15. Polymath, D.H.J.: New equidistribution estimates of Zhang type, and bounded gaps between primes. Algebra Number Theory 8, 2067–2199 (2014)

    Article  MathSciNet  Google Scholar 

  16. Pósa, L.: Hamiltonian circuits in random graphs. Discrete Math. 14, 359–364 (1976)

    Article  MathSciNet  Google Scholar 

  17. Tchebychev, P.: Mémoire sur les nombres premiers. Journal de mathématiques pures et appliquées, Sér. 1, 366–390 (1852)

    Google Scholar 

  18. Zhang, Y.: Bounded gaps between primes. Ann. Math. 179(3), 1121–1174 (2014)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

We would like to thank Miklós Simonovits for valuable suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hong-Bin Chen.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

H.-B. Chen: The author is supported by MOST 105-2115-M-035-006-MY2 and MOST 107-2115-M-035-003-MY2, and the research is partly done while the author was a member of Department of Applied Mathematics, Feng Chia University, Taichung 40724, Taiwan.

H.-L. Fu Supported by MOST 106-2115-M-009-008.

J.-Y. Guo Supported by MOST 106-2115-M-003-007.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, HB., Fu, HL. & Guo, JY. Hamiltonicity in Prime Sum Graphs. Graphs and Combinatorics 37, 209–219 (2021). https://doi.org/10.1007/s00373-020-02241-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00373-020-02241-1

Keywords

Mathematics Subject Classification

Navigation