Skip to main content

Questions on Color-Critical Subgraphs

  • Original Paper
  • Published:
Graphs and Combinatorics Aims and scope Submit manuscript

Abstract

In our work, we define a k-tuple of positive integers \((x_1, \ldots , x_k)\) to be a \(\chi \)-sequence if there exists a k-chromatic graph G such that for each \(i \in \{1, \ldots , k\}\), the order of a minimum i-chromatic subgraph of G is equal to \(x_i\). Denote by \(\mathcal {X}_k\) the set of all \(\chi \)-sequences of length k. A very difficult question is to determine, for a given \((x_1, \ldots , x_k) \in \mathcal {X}_k\), the set of all integers y such that \((x_1, \ldots , x_k, y) \in \mathcal {X}_{k+1}\). We propose a few variants of this question and elaborate upon a number of partial results along the way.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Brandt, S., Harant, J., Naumann, S.: On degree sums of a triangle-free graph. Discrete Math. 337, 76–82 (2014)

    Article  MathSciNet  Google Scholar 

  2. Chvátal, V.: The minimality of the Mycielski graph, Graphs and Combinatorics (Proc. Capital Conf., George Washington Univ., Washington, D.C.), Lecture Notes in Mathematics 406, Springer-Verlag, pp. 243 – 246 (1973)

  3. Cropper, M., Gyárfás, A., Lehel, J.: Hall ratio of the Mycielski graphs. Discrete Math. 306, 1988–1990 (2006)

    Article  MathSciNet  Google Scholar 

  4. Goedgebeur, J.: On minimal triangle-free 6-chromatic graphs. J. Graph Theory 93(1), 34–48 (2020)

    Article  MathSciNet  Google Scholar 

  5. Hajós, G.: Über eine konstruktion nicht \(n\)-färbbarer graphen. Wiss. Z. Martin-Luther-Univ. Halle-Wittenberg Math.-Natur. Reihe 10, 116–117 (1961)

    Google Scholar 

  6. Jensen, T.R., Toft, B.: Graph coloring problems. Wiley, Hoboken (1995)

    MATH  Google Scholar 

  7. Jensen, T., Royle, G.F.: Small graphs with chromatic number 5: a computer search. J. Graph Theory 19(1), 107–116 (1995)

    Article  MathSciNet  Google Scholar 

  8. Müller, T., Stehlik, M.: Generalized Mycielski graphs and the Borsuk-Ulam theorem. Electron. J. Comb. 26(4), #P4.8 (2019)

    Article  Google Scholar 

  9. Mycielski, J.: Sur le coloriage des graphes. Colloq. Math. 3, 161–162 (1955)

    Article  MathSciNet  Google Scholar 

  10. Van Ngoc, N., Tuza, Z.: 4-chromatic graphs with large odd girth. Discrete Math. 138, 387–392 (1995)

    Article  MathSciNet  Google Scholar 

  11. Sachs, H., Stiebitz, M.: On constructive methods in the theory of colour-critical graphs. Discrete Math. 74, 201–226 (1989)

    Article  MathSciNet  Google Scholar 

  12. Stiebitz, M.: Contributions to the theory of color-critical graphs. Diss. B, TH Ilmenau (1985). https://www.tu-ilmenau.de/dma/team/michael-stiebitz/

Download references

Acknowledgements

The authors thank Jan Goedgebeur and Gordon Royle for their helpful correspondence, as well as the anonymous referee for a number of useful suggestions and for the time they spent with our paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nicholas Newman.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Newman, N., Noble, M. Questions on Color-Critical Subgraphs. Graphs and Combinatorics 37, 313–324 (2021). https://doi.org/10.1007/s00373-020-02243-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00373-020-02243-z

Keywords