Skip to main content
Log in

On Bipartite Graphs Having Minimum Fourth Adjacency Coefficient

  • Original Paper
  • Published:
Graphs and Combinatorics Aims and scope Submit manuscript

Abstract

Let G be a simple graph with order n and adjacency matrix \({\mathbf {A}}(G)\). The characteristic polynomial of G is defined by \(\phi (G; \lambda )=\det (\lambda I-{\mathbf {A}}(G))=\sum _{i=0}^n{\mathbf {a}}_i(G)\lambda ^{n-i}\), where \({\mathbf {a}}_i(G)\) is called the i-th adjacency coefficient of G. Denote by \({\mathfrak {B}}_{n,m}\) the collection of all connected bipartite graphs having n vertices and m edges. A bipartite graph G is referred as 4-Sachs optimal if

$$\begin{aligned} {\mathbf {a}}_4(G)=\min \{{\mathbf {a}}_4(H)\mid H\in {\mathfrak {B}}_{n,m}\}. \end{aligned}$$

For any given integer pair (nm), in this paper we investigate the 4-Sachs optimal bipartite graphs. Firstly, we show that each 4-Sachs optimal bipartite graph is a difference graph. Then we deduce some structural properties on 4-Sachs optimal bipartite graphs. Especially, we determine the unique 4-Sachs optimal bipartite (nm)-graphs for \(n\ge 5\) and \(n-1\le m\le 2(n-2)\). Finally, we provide a method to construct a class of cospectral difference graphs, which disprove a conjecture posed by Andelić et al. (J Czech Math 70:1125–1138, 2020).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Andelić, M., Du, Z., da Fonseca, C.M., Simić, S.K.: Tridiagonal matrices and spectral properties of some graph classes. J. Czech. Math. 70, 1125–1138 (2020)

    Article  MathSciNet  Google Scholar 

  2. Andelić, M., da Fonseca, C.M., Simić, S.K., Tošić, D.V.: On bounds for the index of double nested graphs. Linear Algebra Appl. 435(10), 193–210 (2011)

    Article  MathSciNet  Google Scholar 

  3. Andrews, G.: The Theory of Partitions. Addison-Wesley Publishing Company, Boston (1976)

    MATH  Google Scholar 

  4. Ashkenazi, Y.: $C_3$ saturated graphs. Discrete Math. 297, 152–158 (2005)

    Article  MathSciNet  Google Scholar 

  5. Bell, F.K., Cvetković, D., Rowlinson, P., Simić, S.K.: Graphs for which the least eigenvalue is minimal, II. Linear Algebra Appl. 429, 2168–2179 (2008)

    Article  MathSciNet  Google Scholar 

  6. Biggs, N.L.: Algebraic Graph Theory. Cambridge University Press, Cambridge (1993)

    MATH  Google Scholar 

  7. Bollobás, B., Erdös, P.: On a Ramsey–Turán type problem. J. Combin. Theory B 21, 166–168 (1976)

    Article  Google Scholar 

  8. Brualdi, R.A., Ryser, H.J.: Combinatorial Matrix Theory. Cambridge University Press, Cambridge (1991)

    Book  Google Scholar 

  9. Cvetković, D., Doob, M., Sachs, H.: Spectra of Graphs. Academic Press, New York (1980)

    MATH  Google Scholar 

  10. Cvetković, D., Rowlinson, P., Simić, S.: An Introduction to the Theory of Graph Spectra. Cambridge University Press, Cambridge (2009)

    Book  Google Scholar 

  11. Gessel, I.M.: Counting paths in Young’s lattice. J. Stat. Plan. Inference 34, 125–134 (1993)

    Article  MathSciNet  Google Scholar 

  12. Godsil, C., Royle, G.: Algebraic Graph Theory. Springer, New York (2001)

    Book  Google Scholar 

  13. Gong, S.C.: On the rank of a real skew symmetric matrix described by an oriented graph. Linear Multilinear Algebra 65, 1934–1946 (2017)

    Article  MathSciNet  Google Scholar 

  14. Günthard, H.H., Primas, H.: Zusammenhang von Graphtheorie und Mo-Theotie von Molekeln mit Systemen konjugierter Bindungen. Helv. Chim. Acta 39, 1645–1653 (1956)

    Article  Google Scholar 

  15. Hammer, P.L., Peled, U.N., Sun, X.R.: Difference graphs. Discrete Appl. Math. 28, 35–44 (1990)

    Article  MathSciNet  Google Scholar 

  16. Kászonyi, L., Tuza, Z.: Saturated graphs with minimal number of edges. J. Graph Theory 10, 203–210 (1986)

    Article  MathSciNet  Google Scholar 

  17. Keough, L., Radcliffe, A.J.: Graphs with the fewest matchings. Combinatorica 36(6), 703–723 (2016)

    Article  MathSciNet  Google Scholar 

  18. Lazzarin, J., Márquez, O.F., Tura, F.C.: No threshold graphs are cospectral. Linear Algebra Appl. 560, 133–145 (2019)

    Article  MathSciNet  Google Scholar 

  19. Li, S.C., Yu, Y.T.: On a poset of trees revisited. Adv. Appl. Math. 127, 102164 (2021)

    Article  MathSciNet  Google Scholar 

  20. Mahadev, N.V.R., Peled, U.N.: Threshold Graphs and Related Topics. Elsevier Publishers, Amsterdam (1995)

    MATH  Google Scholar 

  21. Mowshowitz, A.: The characteristic polynomial of a graph. J. Combin. Theory Ser. B 12, 177–193 (1972)

    Article  MathSciNet  Google Scholar 

  22. Schwenk, A.J., Wilson, R.J.: On the Eigenvalues of a Graph. Selected Topics in Graph Theory. Academic Press, New York (1978)

  23. Yang, Y.S., Rowlinson, P.: On extremal graphs without four-cycles. Util. Math. 41, 204–220 (1992)

    MathSciNet  MATH  Google Scholar 

  24. Yannakakis, M.: The complexity of the partial order dimension problem. SIAM J. Algebr. Discrete Methods 3, 351–358 (1982)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

Shi-Cai Gong’s research is supported by Zhejiang Provincial Natural Science Foundation of China (No. LY20A010005). The third author’s research is supported by National Natural Science Foundation of China (No. 11901525).

Funding

The authors have not disclosed any funding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shi-Cai Gong.

Ethics declarations

Conflict of interest

The authors have not disclosed any competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gong, SC., Zhang, LP. & Sun, SW. On Bipartite Graphs Having Minimum Fourth Adjacency Coefficient. Graphs and Combinatorics 38, 60 (2022). https://doi.org/10.1007/s00373-022-02461-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00373-022-02461-7

Keywords