Skip to main content
Log in

Equivariant Euler Characteristics of Symplectic Buildings

  • Original Paper
  • Published:
Graphs and Combinatorics Aims and scope Submit manuscript

Abstract

We compute the equivariant Euler characteristics of the buildings for the symplectic groups over finite fields.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Artin, E.: Geometric Algebra. Interscience Publishers Inc, New York, London (1957)

    MATH  Google Scholar 

  2. Atiyah, M., Segal, G.: On equivariant Euler characteristics. J. Geom. Phys. 6(4), 671–677 (1989)

    Article  MathSciNet  Google Scholar 

  3. Bosma, W., Cannon, J., Playoust, C.: The Magma algebra system. I. The user language. J. Symb. Comput. 24(3–4), 235–265 (1997). (Computational algebra and number theory (London, 1993))

    Article  MathSciNet  Google Scholar 

  4. Broto, C., Møller, J., Oliver, B.: Automorphisms of fusion systems of finite simple groups of Lie type and automorphisms of fusion systems of sporadic simple groups. Mem. Am. Math. Soc. 14, 56–89 (2019)

    MATH  Google Scholar 

  5. Bünger, F., Rump, S.M.: Yet more elementary proofs that the determinant of a symplectic matrix is 1. Linear Algebra Appl. 515, 87–95 (2017)

    Article  MathSciNet  Google Scholar 

  6. Fong, P., Srinivasan, B.: The blocks of finite classical groups. J. Reine Angew. Math. 396, 122–191 (1989)

    MathSciNet  MATH  Google Scholar 

  7. Gaschütz, W.: Die Eulersche Funktion endlicher auflösbarer Gruppen. Ill. J. Math. 3, 469–476 (1959)

    MATH  Google Scholar 

  8. Gorenstein, D., Lyons, R., Solomon, R.: The classification of the finite simple groups. Number 3. Part I. Chapter A, Mathematical Surveys and Monographs, vol. 40, American Mathematical Society, Providence (1998) (Almost simple \(K\)-groups)

  9. Hall, P.: The Eulerian functions of a group. Q. J. Math. 7, 134–151 (1936)

    Article  Google Scholar 

  10. Hopkins, M.J., Kuhn, N.J., Ravenel, D.C.: Generalized group characters and complex oriented cohomology theories. J. Am. Math. Soc. 13(3), 553–594 (2000). ((electronic))

    Article  MathSciNet  Google Scholar 

  11. Humphreys, J.E.: Modular Representations of Finite Groups of Lie Type, London Mathematical Society Lecture Note Series, vol. 326. Cambridge University Press, Cambridge (2006)

    Google Scholar 

  12. Ireland, K., Rosen, M.: A Classical Introduction to Modern Number Theory. Graduate Texts in Mathematics, vol. 84, 2nd edn. Springer, New York (1990)

    Book  Google Scholar 

  13. Knörr, R., Robinson, G.R.: Some remarks on a conjecture of Alperin. J. Lond. Math. Soc. (2) 39(1), 48–60 (1989)

    Article  MathSciNet  Google Scholar 

  14. Lidl, R., Niederreiter, H.: Finite Fields. Encyclopedia of Mathematics and its Applications, vol. 20, 2nd edn. Cambridge University Press, Cambridge (1997) (With a foreword by P. M. Cohn)

    Google Scholar 

  15. Macdonald, I.G.: Symmetric Functions and Hall Polynomials. Oxford Classic Texts in the Physical Sciences, 2nd edn. The Clarendon Press, Oxford University Press, New York (2015) (With contribution by A. V. Zelevinsky and a foreword by Richard Stanley, Reprint of the 2008 paperback edition)

    Google Scholar 

  16. Malle, G., Testerman, D.: Linear Algebraic Groups and Finite Groups of Lie Type. Cambridge Studies in Advanced Mathematics, vol. 133. Cambridge University Press, Cambridge (2011)

    Book  Google Scholar 

  17. Meyn, H.: On the construction of irreducible self-reciprocal polynomials over finite fields. Appl. Algebra Eng. Commun. Comput. 1(1), 43–53 (1990)

    Article  MathSciNet  Google Scholar 

  18. Møller, J.M.: Equivariant Euler characteristics of partition posets. Eur. J. Combin. 61, 1–24 (2017)

    Article  MathSciNet  Google Scholar 

  19. Møller, J.M.: Equivariant Euler characteristics of subspace posets. J. Combin. Theory Ser. A 167, 431–459 (2019)

    Article  MathSciNet  Google Scholar 

  20. Møller, J.M.: Equivariant Euler characteristics of unitary buildings. J. Algebraic Combin. 54(3), 915–946 (2021)

  21. Mullen, G.L. (ed.): Handbook of Finite Fields. Discrete Mathematics and its Applications. CRC Press, Boca Raton (2013)

    Google Scholar 

  22. Quillen, D.: Homotopy properties of the poset of nontrivial \(p\)-subgroups of a group. Adv. Math. 28(2), 101–128 (1978)

    Article  MathSciNet  Google Scholar 

  23. Rivin, I.: Walks on groups, counting reducible matrices, polynomials, and surface and free group automorphisms. Duke Math. J. 142(2), 353–379 (2008)

    Article  MathSciNet  Google Scholar 

  24. Stanley, Richard P.: Enumerative Combinatorics, vol. 1. Cambridge Studies in Advanced Mathematics, vol. 49. Cambridge University Press, Cambridge (1997) (With a foreword by Gian-Carlo Rota, Corrected reprint of the 1986 original)

    Book  Google Scholar 

  25. Tamanoi, H.: Generalized orbifold Euler characteristic of symmetric products and equivariant Morava \(K\)-theory. Algebr. Geom. Topol. 1, 115–141 (2001). ((electronic))

    Article  MathSciNet  Google Scholar 

  26. Tamanoi, H.: Generalized orbifold Euler characteristics of symmetric orbifolds and covering spaces. Algebr. Geom. Topol. 3, 791–856 (2003). ((electronic))

    Article  MathSciNet  Google Scholar 

  27. Thévenaz, J.: Polynomial identities for partitions. Eur. J. Combin. 13(2), 127–139 (1992)

    Article  MathSciNet  Google Scholar 

  28. Thévenaz, J.: Equivariant \(K\)-theory and Alperin’s conjecture. J. Pure Appl. Algebra 85(2), 185–202 (1993)

    Article  MathSciNet  Google Scholar 

  29. Vinroot, C.R.: Real representations of finite symplectic groups over fields of characteristic two. ArXiv e-prints (2017)

  30. Wall, G.E.: Some applications of the Eulerian functions of a finite group. J. Austr. Math. Soc. 2 35–59 (1961/1962)

  31. Wall, G.E.: On the conjugacy classes in the unitary, symplectic and orthogonal groups. J. Austr. Math. Soc. 3, 1–62 (1963)

    Article  MathSciNet  Google Scholar 

  32. Wall, G.E.: Counting cyclic and separable matrices over a finite field. Bull. Austr. Math. Soc. 60(2), 253–284 (1999)

    Article  MathSciNet  Google Scholar 

  33. Webb, P.J.: A local method in group cohomology. Comment. Math. Helv. 62(1), 135–167 (1987)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jesper M. Møller.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A. Equivariant Euler Characteristics of Posets

This appendix contains a few elementary observations about equivariant Euler characteristics for group actions on posets.

Let S be a finite set and \(\dim :S \rightarrow \mathbf {Z}\) a function associating an integer \(\ge -1\) to every element of S. The Euler characteristic and the reduced Euler characteristic of the graded set \((S,\dim )\) are the alternating sums

$$\begin{aligned} &\chi (S,\dim )= {} \sum _{d \ge 0} (-1)^d|\dim ^{-1}(d)| \\ & {\tilde{\upchi}} (S,\dim )= \sum _{d \ge -1} (-1)^d|\dim ^{-1}(d)| = \chi (S,\dim )-|\dim ^{-1}(-1)| \end{aligned}$$

of the numbers of d-dimensional elements of S for \(d \ge 0\) or \(d \ge -1\).

Let \(\Pi\) be a finite poset. A simplex in \(\Pi\) is a totally ordered subset of \(\Pi\). The set \(|\Pi |\) of all simplices in \(\Pi\) (including the empty simplex) is graded by the function \(\dim :|\Pi | \rightarrow \mathbf {Z}\) taking a simplex \(\sigma \subseteq \Pi\) to one less than its cardinality, \(\dim \sigma = |\sigma |-1\).

Definition A.1

The Euler characteristic of the poset \(\Pi\) is \(\chi (\Pi ) = \chi (|\Pi |,\dim )\) and the reduced Euler characteristic is \({\tilde{\upchi}} (\Pi ) = {\tilde{\upchi}} (|\Pi |,\dim ) =\chi (\Pi )-1\).

Let G be a finite group. Write \({\text {Hom}}_{}(\mathbf {Z}^r,G)\) for the set of homomorphisms of \(\mathbf {Z}^r\) to G and \({\text {Hom}}_{}(\mathbf {Z}^r,G)/G\) for the set of conjugacy classes of such homomorphisms. Equivalently, \({\text {Hom}}_{}(\mathbf {Z}^r,G)\) is the set of commuting r-tuples of elements in G and \({\text {Hom}}_{}(\mathbf {Z}^r,G)/G\) is the set of conjugacy classes of commuting r-tuples.

Suppose now that G acts on the poset \(\Pi\) through order preserving bijections. For any subset X of G, let \(C_\Pi (X)=\{u \in \Pi \vert \forall g \in X :u^g = u \}\) denote the full subposet of elements of \(\Pi\) fixed under the action from X. For any prime number p, let \(Z_p^r = \mathbf {Z}\times \mathbf {Z}_p^{r-1}\) where \(\mathbf {Z}_p\) is the abelian group of p-adic integers.

Definition A.2

[2, 25] The rth, \(r \ge 1\), (p-primary) equivariant Euler characteristic and (p-primary) reduced equivariant Euler characteristic of the G-poset \(\Pi\) are

$$\begin{aligned}&\chi _r(\Pi ,G) = \frac{1}{|G|} \sum _ {X \in {\text {Hom}}_{}(\mathbf {Z}^r,G)} \chi (C_\Pi (X(\mathbf {Z}^r)))\\& \chi _r(p,\Pi ,G) = \frac{1}{|G|} \sum _ {X \in {\text {Hom}}_{}(Z_p^r,G)} \chi (C_\Pi (X(Z_p^r))) \\&{\tilde{\upchi}}_r(\Pi ,G) = \frac{1}{|G|} \sum _ {X \in {\text {Hom}}_{}(\mathbf {Z}^r,G)} {\tilde{\upchi}} (C_\Pi (X(\mathbf {Z}^r)))\\& {\tilde{\upchi}}_r(p,\Pi ,G) = \frac{1}{|G|} \sum _ {X \in {\text {Hom}}_{}(Z_p^r,G)}{\tilde{\upchi}} (C_\Pi (X(Z_p^r))) \end{aligned}$$

We note that \({\tilde{\upchi}} _1(p,\Pi ,G)={\tilde{\upchi}} _1(\Pi ,G)\) for all primes p since \(Z_p^1 = \mathbf {Z}\). Also, \(\chi _r(\Pi ,G) = {\tilde{\upchi}}_r(\Pi ,G) + |{\text {Hom}}_{}(\mathbf {Z}^r,G)|/|G|\) and \(\chi _r(p,\Pi ,G) = {\tilde{\upchi}}_r(p,\Pi ,G) + |{\text {Hom}}_{}(Z_p^r,G)|/|G|\). The numbers of conjugacy classes of r-tuples of commuting elements of G and commuting p-power order elements are

$$\begin{aligned} |{\text {Hom}}_{}(\mathbf {Z}^{r-1},G)/G|= & {} |{\text {Hom}}_{}(\mathbf {Z}^{r},G)|/|G|, \\ |{\text {Hom}}_{}(\mathbf {Z}_p^{r-1},G)/G|= & {} |{\text {Hom}}_{}(Z_p^{r},G)|/|G| \qquad (r \ge 1) \end{aligned}$$

as \(|{\text {Hom}}_{}(K,G)/G| = |{\text {Hom}}_{}(\mathbf {Z}\times K,G)|/|G|\) for any group K [10, Lemma 4.13].

The equivariant Euler characteristics satisfy a recurrence relation.

Lemma A.3

For all \(r \ge 1\),

$$\begin{aligned}{\tilde{\upchi}}_{r+1}(\Pi ,G) & = \sum _{X \in {\text {Hom}}_{}(\mathbf {Z},G)/G} {\tilde{\upchi}}_r(C_\Pi (X),C_G(X)) \\&= \sum _{X \in {\text {Hom}}_{}(\mathbf {Z}^r,G)/G} {\tilde{\upchi}}_1(C_\Pi (X),C_G(X)) \\{\tilde{\upchi}}_{r+1}(p,\Pi ,G) &= \sum _{X \in {\text {Hom}}_{}(\mathbf {Z}_p,G)/G} {\tilde{\upchi}}_r(p,C_\Pi (X),C_G(X)) \\&= \sum _{X \in {\text {Hom}}_{}(\mathbf {Z}_p^r,G)/G} {\tilde{\upchi}}_1(C_\Pi (X),C_G(X)) \end{aligned}$$

and similar formulas are true for \(\chi _{r+1}(\Pi ,G)\) and \(\chi _{r+1}(p,\Pi ,G)\).

Proof

A little more generally, we consider \({\tilde{\upchi}}_{r_1+r_2}(p,\Pi ,G)\) for \(r_1 \ge 1\) and \(r_2 \ge 2\). The p-primary equivariant Euler characteristic is

$$\begin{aligned}{\tilde{\upchi}}_{r_1+r_2}(p,\Pi ,G) &= \frac{1}{|G|} \sum _{X \in {\text {Hom}}_{}(\mathbf {Z}\times \mathbf {Z}_p^{r_1+r_2-1},G)} {\tilde{\upchi}} (C_\Pi (X))\\&=\frac{1}{|G|} \sum _{X_1 \in {\text {Hom}}_{}(\mathbf {Z}_p^{r_1},G)}\sum _ {X_2 \in {\text {Hom}}_{}(\mathbf {Z}\times \mathbf {Z}^{r_2-1},C_G(X_1))} {\tilde{\upchi}} (C_{C_\Pi (X_1)}(X_2)) \\&= \frac{1}{|G|} \sum _{X_1 \in {\text {Hom}}_{}(\mathbf {Z}_p^{r_1},G)} |C_G(X_1)| {\tilde{\upchi}}_{r_2}(p,C_\Pi (X_1),C_G(X_1))\\& =\sum _{X_1 \in {\text {Hom}}_{}(\mathbf {Z}_p^{r_1},G)/G} {\tilde{\upchi}}_{r_2}(p,C_\Pi (X_1),C_G(X_1)) \end{aligned}$$

where we use that the conjugacy class of \(X_1(\mathbf {Z}_p^{r_1})\) contains \(|G : C_G(X_1)|\) elements. \(\square\)

The set \(|C_\Pi (X)|/C_G(X)\) of \(C_G(X)\)-orbits of \(C_\Pi (X)\)-simplices, for any \(X \subseteq G\), has Euler characteristic relative to the dimension function induced by \(\dim :|\Pi | \rightarrow \{-1,0,1,\ldots \}\), \(\dim \sigma = |\sigma |-1\).

Lemma A.4

For all \(r \ge 0\),

$$\begin{aligned} {\tilde{\upchi}}_{r+1}(\Pi ,G)= & {} \sum _{X \in {\text {Hom}}_{}(\mathbf {Z}^{r},G)/G} {\tilde{\upchi}} (|C_\Pi (X)|/C_G(X)), \\ {\tilde{\upchi}}_{r+1}(p,\Pi ,G)= & {} \sum _{X \in {\text {Hom}}_{}(\mathbf {Z}_p^{r},G)/G} {\tilde{\upchi}} (|C_\Pi (X)|/C_G(X)) \end{aligned}$$

Proof

We first consider the case \(r=0\). The orbit counting formula shows that

$$\begin{aligned} {\tilde{\upchi}} (|\Pi |/G)&= \sum _{d \ge -1} (-1)^d | \dim ^{-1}(d)/G |\\&=\frac{1}{|G|} \sum _{d \ge -1} (-1)^d \sum _{g \in G} ||C_\Pi (g)| \cap \dim ^{-1}(d)|\\&=\frac{1}{|G|} \sum _{g \in G} \sum _{d \ge -1} (-1)^d ||C_\Pi (g)| \cap \dim ^{-1}(d) |\\&= \frac{1}{|G|}\sum _{g \in G} {\tilde{\upchi}} (C_\Pi (g)) = {\tilde{\upchi}}_1(\Pi ,G) \end{aligned}$$

Consequently, for all \(r \ge 1\),

$$\begin{aligned}{\tilde{\upchi}}_{r+1}(\Pi ,G) &= \sum _{X \in {\text {Hom}}_{}(\mathbf {Z}^{r},G)/G} {\tilde{\upchi}}_1(C_\Pi (X),C_G(X)) \\&= \sum _{X \in {\text {Hom}}_{}(\mathbf {Z}^{r},G)/G} {\tilde{\upchi}} (|C_\Pi (X)|/C_G(X)) \\ {\tilde{\upchi}}_{r+1}(p,\Pi ,G) &= \sum _{X \in {\text {Hom}}_{}(\mathbf {Z}_p^{r},G)/G} {\tilde{\upchi}}_1(C_\Pi (X),C_G(X)) \\&= \sum _{X \in {\text {Hom}}_{}(\mathbf {Z}_p^{r},G)/G} {\tilde{\upchi}} (|C_\Pi (X)|/C_G(X)) \end{aligned}$$

by Lemma A.3. \(\square\)

It is clear from Lemma A.4, but maybe not from Definition A.2, that all (p-primary) equivariant Euler characteristics are integers.

Appendix B. Eulerian Functions of Groups

Let G be a finite group acting on a finite poset \(\Pi\). For any natural number \(r \ge 1\), the rth reduced equivariant Euler characteristic (Defintion A.1) and the p-primary rth equivariant reduced Euler characteristic are

$$\begin{aligned}&{\tilde{\upchi}}_r(\Pi ,G) = \frac{1}{|G|}\sum _{X \in {\text {Hom}}_{}(\mathbf {Z}^r,G)} {\tilde{\upchi}} (C_{\Pi }(X)) = \frac{1}{|G|} \sum _{ B \le G} \varphi _{\mathbf {Z}^r}(B) {\tilde{\upchi}} (C_\Pi (B)) \end{aligned}$$
(B.1)
$$\begin{aligned}&{\tilde{\upchi}}_r(p,\Pi ,G) = \frac{1}{|G|} \sum _{X \in {\text {Hom}}_{}(Z_p^r,G)} {\tilde{\upchi}} (C_\Pi (X)) = \frac{1}{|G|}\sum _{ B \le G} \varphi _{Z_p^r}(B) {\tilde{\upchi}} (C_\Pi (B)) \end{aligned}$$
(B.2)

where \(\varphi _{\mathbf {Z}^r}(B)\) (\(\varphi _{Z_p^r}(B)\)) is the number of epimorphisms of the abelian group \(\mathbf {Z}^r\) (\(Z_p^r =\mathbf {Z}\times \mathbf {Z}_p^{r-1}\)) onto the subgroup B of G. In this appendix, we recall some of the properties, helpful for concrete computer assisted calculations of equivariant Euler characteristics, of the eulerian function \(\varphi _{\mathbf {Z}^r}(B)\) [9].

For any finite group B, let \({\text {Hom}}_{}(\mathbf {Z}^r,B)\) and \({\text {Epi}}_{}(\mathbf {Z}^r,B)\) be the set of homomorphisms or epimorphisms of \(\mathbf {Z}^r\) to B. Then \({\text {Hom}}_{}(\mathbf {Z}^r,B) =\coprod _{A \le B} {\text {Epi}}_{}(\mathbf {Z}^r,A)\) and \(\varphi _{\mathbf {Z}^r}(B) = |\mathrm {Epi}(\mathbf {Z}^r,B)|\). (When \(r=1\) and \(C_n\) is cyclic of order n, \(\varphi _{\mathbf {Z}^1}(C_n)\) is Euler’s totient function \(\varphi (n)\).) We observe that \(\varphi _{\mathbf {Z}^r}\) is multiplicative.

Lemma B.3

Let \(B_1\) and \(B_2\) be two finite groups of coprime order.

  1. (1)

    For any subgroup A of \(B_1 \times B_2\), \(A = A_1 \times A_2\) where \(A_i\) is the image of A under the projection \(B_1 \times B_2 \rightarrow B_i\), \(i=1,2\).

  2. (2)

    \(\varphi _{\mathbf {Z}^r}(B_1 \times B_2) = \varphi _{\mathbf {Z}^r}(B_1) \times \varphi _{\mathbf {Z}^r}(B_2)\) for any \(r \ge 1\)

Proof

Let \(g_i\) be the order of \(B_i\), \(i=1,2\). The order of A, which divides \(g_1g_2\), is of the form \(k_1k_2\) where \(k_1\) divides \(g_1\) and \(k_2\) divides \(g_2\). The order of \(A_i\) divides \(k_1k_2\) and \(g_i\). Thus \(|A_i|\) divides \(k_i\). It follows that the order of \(A_1 \times A_2\) divides the order of A. But A is a subgroup of \(A_1 \times A_2\) so \(|A| = |A_1 \times A_2|\) and \(A= A_1 \times A_2\). \(\square\)

Next, we compute \(\varphi _{\mathbf {Z}^r}(C_p^d)\) where \(C_p^d\) is elementary abelian of order \(p^d\). First, \({\text {Epi}}_{}(\mathbf {Z}^r,C_p^d) = {\text {Epi}}_{}(C_p^r,C_p^d)\), the set of epimorphisms of \(C_p^r\) onto \(C_p^d\). Next, note that there is a bijection between the orbit set \({\text {Epi}}_{}(C_p^r,C_p^d)/{\text {Aut}}_{}(C_p^d)\) and the set of \((r-d)\)-dimensional subspaces of \(\mathbf {F}_p^r\) (kernels of epimorphisms). The number of such subspaces is the Gaussian binomial coefficient \(\left( {\begin{array}{*{20}c}r\\ r-d\end{array}}\right) _p = \left( {\begin{array}{*{20}c}r\\ d\end{array}}\right) _p\) [24, Proposition 1.3.18]. Thus

$$\begin{aligned} \varphi _{\mathbf {Z}^r}(C_p^d) = |{\text {Epi}}_{}(\mathbf {Z}^r,C_p^d)| = \left( {\begin{array}{*{20}c}r\\ d\end{array}}\right) _p |{\text {GL}}^{+}_{d}(\mathbf {F}_{p})| = \prod _{j=0}^{d-1} (p^r-p^j) \end{aligned}$$
(B.3)

In the general case, the number of homomorphism of \(\mathbf {Z}^r\) to B is

$$\begin{aligned} |{\text {Hom}}_{}(\mathbf {Z}^r,B)| = \sum _{A \le B}|{\text {Epi}}_{}(\mathbf {Z}^r,A)| = \sum _{A \le G}|{\text {Epi}}_{}(\mathbf {Z}^r,A)| \zeta (A,B) \end{aligned}$$

where \(\zeta (A,B)=1\) if \(A \le B\) and \(\zeta (A,B)=0\) otherwise. The number of epimorphism of \(\mathbf {Z}^r\) onto B is

$$\begin{aligned} \varphi _{\mathbf {Z}^r}(B) = |{\text {Epi}}_{}(\mathbf {Z}^r,B)| = \sum _{A \le G}|{\text {Hom}}_{}(\mathbf {Z}^r,A)| \mu (A,B) \end{aligned}$$

by Möbius inversion. Of course, \(\varphi _{\mathbf {Z}^r}(B)>0\) if and only if B is abelian and generated by r of its elements. Assuming B is abelian, \(|{\text {Hom}}_{}(\mathbf {Z}^r,A)|=|A|^r\) for any \(A \le B\) so that [7, 9, 30]

$$\begin{aligned} \varphi _{\mathbf {Z}^r}(B) = |{\text {Epi}}_{}(\mathbf {Z}^r,B)| = \sum _{A \le B} |A|^r \mu (A,B) \end{aligned}$$

The Möbius function \(\mu (A,B)=0\) unless \(\Phi (B) \le A \le B\) and then \(\mu _B(A,B) = \mu _{B/\Phi (B)}(A/\Phi (B),B/\Phi (B))\) where \(\Phi (B)\) is the Frattini subgroup [7]. Therefore

$$\begin{aligned}&\varphi _{\mathbf {Z}^r}(B)= \sum _{A \le B} |A|^r \mu _B(A,B) = |\Phi (B)|^r \sum _{A \le B/\Phi (B)} |A|^r \mu _{B/\Phi (B)}(A,B/\Phi (B))\\&\quad =|\Phi (B)|^r \varphi _{\mathbf {Z}^r}(B/\Phi (B)) \end{aligned}$$

The abelian group B is the product, \(B=\prod B_p\), of its Sylow \(p\)-subgroups, \(B_p\). By multiplicativity (Lemma B.3.(2)),

$$\begin{aligned} \varphi _{\mathbf {Z}^r}(B) = \prod _p \varphi _{\mathbf {Z}^r}(B_p) \end{aligned}$$

The Frattini quotient \(B_p/\Phi (B_p)\) is an elementary abelian p-group of order, say, \(p^d\). We conclude that

$$\begin{aligned} \varphi _{\mathbf {Z}^r}(B_p) &= |\Phi (B_p)|^r |{\text {Epi}}_{}(\mathbf {Z}^r,C_p^d)| {\mathop {=}\limits ^{\text {(B.4)}}} |\Phi (B_p)|^r \prod _{j=0}^{d-1} (p^r-p^j) \\&= |B_p|^r \prod _{j=0}^{d-1} (1-p^{j-r}) \end{aligned}$$

For the final equality, use that if \(B_p\) has order \(p^m\), then the order of the Frattini subgroup is \(p^{m-d}\) so that \(|\Phi (B_p)|^r = p^{r(m-d)}\).

For a prime p, recall that \(Z^r_p = \mathbf {Z}\times \mathbf {Z}_p^{r-1}\). In particular, \(Z^1_p = \mathbf {Z}\) is independent of p. The number of epimorphisms of \(Z_p^r\) onto B is

$$\begin{aligned} \varphi _{Z_p^r}(B) = \varphi _{Z_p^r} \left (\prod _s B_s \right) = \prod _s \varphi _{Z_p^r}(B_s) = \varphi _{\mathbf {Z}^r}(B_p) \prod _{s \ne p} \varphi _{\mathbf {Z}}(B_s) \end{aligned}$$

where \(B_s\) is the Sylow \(s\)-subgroup of B. Here, \(\varphi _{\mathbf {Z}}(B_s)=|B_s|(1-p^{-1})\) if \(B_s\) is cyclic and \(\varphi _{\mathbf {Z}}(B_s)=0\) otherwise. Thus \(\varphi _{Z_q^r}(B)>0\) if and only if \(B_q\) can be generated by r of its elements and \(B_s\) is cyclic for all primes \(s \ne q\).

Example B.5

The symplectic group \(G={\text {Sp}}_{4}(\mathbf {F}_{2})\), of order 720, acts on the discrete poset \(L={\text {L}}_4^*(\mathbf {F}_2)\) of 30 totally isotropic subspaces. Equation (B.1) with the data of Figure 2, found with the help of the computer algebra system Magma [3], shows that

$$\begin{aligned} -&{\tilde{\upchi}}_{r+1}(L, G) = -\frac{1}{720}(-16+80(3^{r+1}-1) - 36(5^{r+1}-1) - 10(3^{r+1}-1)(3^{r+1}-3))\\&\quad =\frac{1}{8}(3^r-1)^2 - \frac{1}{4}(3^r-5^r) \\ -&{\tilde{\upchi}}_{r+1}(3,L,G) = -\frac{1}{720}(-16+80(3^{r+1}-1) - 36 \cdot 4 - 10(3^{r+1}-1)(3^{r+1}-3))\\&\quad =\frac{1}{8}(3^r-1)^2 - \frac{1}{4}(3^r-1) \\ -&{\tilde{\upchi}}_{r+1}(5,L,G) = -\frac{1}{720}(-16+160 - 36 (5^{r+1}-1)) = \frac{1}{4}(5^r-1) \end{aligned}$$

in accordance with Example 6.8. By Lemma 4.2, in (B.1) we only need abelian subgroups of G of order prime to 2.

Fig. 2
figure 2

Abelian \(2'\)-subgroups of \({\text {Sp}}_{4}(\mathbf {F}_{2})\)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Møller, J.M. Equivariant Euler Characteristics of Symplectic Buildings. Graphs and Combinatorics 38, 91 (2022). https://doi.org/10.1007/s00373-022-02474-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00373-022-02474-2

Keywords

Mathematics Subject Classification