Skip to main content
Log in

Neighborhood Complexes, Homotopy Test Graphs and an Application to Coloring of Product Graphs

  • Original Paper
  • Published:
Graphs and Combinatorics Aims and scope Submit manuscript

Abstract

The neighborhood complex \(\mathcal {N}(G)\) of a graph G was introduced by L. Lovász in his proof of Kneser conjecture. He proved that for any graph G,

$$\begin{aligned} \chi (G) \ge conn(\mathcal {N}(G))+3. \end{aligned}$$
(2)

In this article we show that for a class of exponential graphs the bound given in (2) is tight. Further, we show that the neighborhood complexes of these exponential graphs are spheres up to homotopy. We were also able to find a class of exponential graphs, which are homotopy test graphs. In 1966, Hedetniemi conjectured that the chromatic number of the categori-cal product of two graphs is the minimum of the chromatic number of the factors. In 2019, Shitov [26] gave a counterexample to this conjecture. Let M(G) denotes the Mycielskian of a graph G. We show that, for any graph G containing \(M(M(K_n))\) as a subgraph and for any graph H, if \(\chi (G \times H) = n+1\), then \(\min \{\chi (G), \chi (H)\} = n+1\). Therefore, we enrich the family of graphs satisfying the Hedetniemi’s conjecture.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

Notes

  1. The generalized Mycielskians (also known as cones over graphs) of a graph were introduced by Tardif ([27]), which are the natural generalization of Mycielskian.

  2. The Mycielskian of a graph was introduced by Mycielski ([22]) in 1955.

References

  1. Alishahi, M., Hajiabolhassan, H.: Hedetniemi’s conjecture via altermatic number, arXiv:1403.4404

  2. Babson, E., Kozlov, D.N.: Complexes of graph homomorphisms. Israel J. Math. 152, 285–312 (2006)

    Article  MathSciNet  Google Scholar 

  3. Babson, E., Kozlov, D.N.: Proof of the Lovaśz conjecture. Ann. Math. 2(165), 965–1007 (2007)

    Article  Google Scholar 

  4. Björner, A., de Longueville, M.: Neighborhood complexes of stable Kneser graphs. Combinatorica 23(1), 23–34 (2003)

    Article  MathSciNet  Google Scholar 

  5. Broere, I., Matsoha, M.D.V.: Applications of Hajós-type constructions to the Hedetniemi conjecture. J. Graph Theory 85(2), 585–594 (2017)

    Article  MathSciNet  Google Scholar 

  6. Burr, S.A., Erdős, P., Lovász, L.: On graphs of Ramsey type. Ars Combinatoria 1(1), 167–190 (1976)

    MathSciNet  MATH  Google Scholar 

  7. Chudnovsky, M., Robertson, N., Seymour, P., Thomas, R.: The strong perfect graph theorem. Ann. of Math. (2) 164(1), 51–229 (2006)

    Article  MathSciNet  Google Scholar 

  8. Dochtermann, A.: Hom complexes and homotopy type in the category of graphs. Euro. J. Combin. 30, 490–509 (2009)

    Article  MathSciNet  Google Scholar 

  9. Dochtermann, A., Schultz, C.: Topology of Hom complexes and test graphs for bounding chromatic number. Israel J. Math. 187, 371–417 (2012)

    Article  MathSciNet  Google Scholar 

  10. Duffus, D., Sands, B., Woodrow, R.: On the chromatic number of the product of graphs. J. Graph Theory 9(4), 487–495 (1985)

    Article  MathSciNet  Google Scholar 

  11. El-Zahar, M., Sauer, N.: The chromatic number of the product of two \(4\)-chromatic graph is \(4\). Combinatorica 5, 121–126 (1985)

    Article  MathSciNet  Google Scholar 

  12. Godsil, C., Royle, G.: Algebraic Graph Theory. Graduate Texts in Mathematics, Springer Verlag, New York. 207, (2001)

  13. Hedetniemi, S.T.: Homomorphisms and graph automata, University of Michigan Technical Report 03105-44-T (1966)

  14. Hell, P., Neil, J.: Graphs and Homomorphisms. Oxford Lecture Series in Mathematics and its Applications, Oxford University Press, Oxford. 28, (2004)

  15. Hoory, S., Linial, N.: A counterexample to a conjecture of Björner and Lovász on the \(\chi \)-coloring complex. J. Combin. Theory Ser. B 95(2), 346–349 (2005)

    Article  MathSciNet  Google Scholar 

  16. Kneser, M.: Aufgabe 360. Jahresbericht der Deutschen Mathematiker-Vereinigung, 58, (1955)

  17. Kozlov, D.N.: A simple proof for folds on both sides in complexes of graph homomorphisms. Proc. Am. Math. Soc. 134(5), 1265–1270 (2006)

    Article  MathSciNet  Google Scholar 

  18. Kozlov, D.N.: Chromatic numbers, morphism complexes and Steifel Whitney Classes. Geometric Combinatorics, IAS Park City Math. Ser,. 13, Amer. Math. Soc, 249–315 (2007)

  19. Kozlov, D.N.: Combinatorial Algebraic Topology. Springer Verlag, Berlin 1928, (2008)

  20. Lovász, L.: Kneser’s conjecture, chromatic number and homotopy. J. Combin. Theory Ser. A 25, 319–324 (1978)

    Article  MathSciNet  Google Scholar 

  21. Matsushita, T.: Answers to some problems about graph coloring test graphs. Euro. J. Combin. 45, 59–64 (2015)

    Article  MathSciNet  Google Scholar 

  22. Mycielski, J.: Sur le coloriage des graphes. Colloq. Math. 3, 161–162 (1955)

    Article  MathSciNet  Google Scholar 

  23. Nilakantan, N., Shukla, S.: Neighborhood complexes of some exponential graphs. Electron. J. Combin., 23, no.2, P2.26 (2016)

  24. Sauer, N., Zhu, X.: An approach to Hedetniemi’s conjecture. J. Graph Theory 16(5), 423–436 (1992)

    Article  MathSciNet  Google Scholar 

  25. Schultz, C.: The equivariant topology of stable Kneser graphs. J. Combin. Theory Ser. A 118(8), 2291–2318 (2011)

    Article  MathSciNet  Google Scholar 

  26. Shitov, Y.: Counterexamples to Hedetniemi’s conjecture. Ann. Math (2) 190(2), 663–667 (2019)

    Article  MathSciNet  Google Scholar 

  27. Tardif, C.: Fractional chromatic numbers of cones over graphs. J. Graph Theory 38, 87–94 (2001)

    Article  MathSciNet  Google Scholar 

  28. Tardif, C.: Hedetniemi’s conjecture, 40 years later. Graph Theory Notes NY 54, 46–57 (2008)

    MathSciNet  Google Scholar 

  29. Tardif, C., Zhu, X.: On Hedetniemi’s conjecture and the colour template scheme. Discrete Math. 253(1–3), 77–85 (2002)

    Article  MathSciNet  Google Scholar 

  30. Turzík, D.: A note on chromatic number of direct product of graphs. Comment. Math. Univ. Carolin. 24(3), 461–463 (1983)

    MathSciNet  MATH  Google Scholar 

  31. Welzl, E.: Symmetric graphs and interpretations. J. Combin. Theory Ser. B 37(3), 235–244 (1984)

    Article  MathSciNet  Google Scholar 

Download references

Funding

The authors have not disclosed any funding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Samir Shukla.

Ethics declarations

Conflict of interest

The authors have not disclosed any competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shukla, S. Neighborhood Complexes, Homotopy Test Graphs and an Application to Coloring of Product Graphs. Graphs and Combinatorics 38, 93 (2022). https://doi.org/10.1007/s00373-022-02490-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00373-022-02490-2

Keywords

Mathematics Subject Classification