Abstract
Given two graphs H and F, let ex(n, H, F) denote the maximum number of copies of H in an F-free graph on n vertices. In the paper, we show that \(ex(n,K_r,2K_r)=\mathcal {N}(K_{r-1}, T_{r-1}(n-1))\) for \(n\ge 3r^5\) and \(r\ge 3\), where \(\mathcal {N}(K_{r-1}, T_{r-1}(n-1))\) denotes the number of \((r-1)\)-cliques in \((r-1)\)-partite Turán graph on \(n-1\) vertices. For \(r=3\), we determine \(ex(n,K_3,2K_3)\) for all n.
Similar content being viewed by others
References
Alon, N., Shikhelman, C.: Many T copies in \(H\)-free graphs. J. Comb. Theory Ser. B 121, 146–172 (2016)
Bollobás, B., Győri, E.: Pentagons vs. triangles. Discret. Math. 308(19), 4332–4336 (2008)
Ergemlidze, B., Győri, E., Methuku, A., Salia, N.: A note on the maximum number of triangles in a \(C_5\)-free graph. J. Graph Theory 90, 227–230 (2019)
Frankl, P.: On intersecting families of finite sets. J. Comb. Theory Ser. A 24(2), 146–161 (1978)
Füredi, Z.: On finite set-systems whose every intersection is a kernel of a star. Discret. Math. 47, 129–132 (1983)
Gerbner, D., Győri, E., Methuku, A., Vizer, M.: Generalized Turán problems for even cycles, arXiv:1712.07079
Gerbner, D., Methuku, A., Vizer, M.: Generalized Turán problems for disjoint copies of graphs. Discret. Math. 342(11), 3130–3141 (2019)
Gerbner, D., Patkós, B.: Generalized Turán results for intersecting cliques. arXiv preprint (2021), arXiv:2105.07297v1
Gishboliner, L., Shapira, A.: A generalized Turán problem and its applications. Int. Math. Res. Not. IMRN 11, 3417–3452 (2020)
Liu, E.L., Wang, J.: The Generalized Turán Problem of Two Intersecting Cliques. arXiv preprint (2021), arXiv:2101.08004
Luo, R.: The maximum number of cliques in graphs without long cycles, J. Combin. Theory Ser. B 128, 219C226 (2018)
Ma, J., Qiu, Y.: Some sharp results on the generalized Turán numbers. Eur. J. Comb. 84, 103026 (2020)
Mantel, W.: Problem 28. Wiskundige Opgaven 10, 60–61 (1907)
Turán, P.: Eine Extremalaufgabe aus der Graphentheorie. Mat. Fiz. Lapok 48, 436–452 (1941)
Zykov, A.A.: On some properties of linear complexes. Matematicheskii sbornik 66(2), 163–188 (1949)
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Yuan, X., Yang, W. On Generalized Turán Number of Two Disjoint Cliques. Graphs and Combinatorics 38, 116 (2022). https://doi.org/10.1007/s00373-022-02518-7
Received:
Revised:
Accepted:
Published:
DOI: https://doi.org/10.1007/s00373-022-02518-7